1、算法综述
- Cover和Hart在1968年提出了最初的邻近算法
- 分类(Classification)算法
- 输入给予实例的学习(Instance-based learning),懒惰学习(lazy learning)
2、算法原理
- 为了判断未知实例的类别,以所有已知类别的实例作为参照
- 选择参数K
- 计算未知实例与与所有已知实例的距离
- 选择最近K个已知实例
- 根据少数服从多数原则(Majority-Voting),让未知实例归类为K个最近样本中最多数的类别。
关于距离的衡量方法:
- Euclidean Distance
在具体的数据中,每一个点不一定仅存在于二维空间中,也有可能为三维,四维…
无论几维,其到某点( x m , y m , . . . , z m x_m,y_m,...,z_m xm,ym,...,zm)距离计算公式都为
E ( d ) = ( x 1 − x m ) 2 + ( y 1 − y m ) 2 + . . . + ( z 1 − z m ) 2 E(d)=\sqrt {(x_1-x_m)^2+(y_1-y_m)^2+...+(z_1-z_m)^2} E(d)=(x1−xm)2+(y1−ym)2+...+(z1−zm)2- 其他距离的衡量方式:余弦值(Cos),相关度(Correlation),曼哈顿距离(Manhattan Distance)
3、算法举例
|电影名称|打斗次数|接吻次数|电影类型|
|----|
|Clifornia Man|3|104|Romance|
|He’s Not Really into Dudes|2|100|Romance|
|Beautiful Woman|1|81|Romance|
|Kevin Longblade|101|10|Action|
|Robo Stayer 3000|99|5|Action|
|Amped II|98|2|Action|
|Unknown|18|90|Unknown|
通过以上六部电影来预测Unknown为何电影类型
Step 1
将每部电影转化为空间坐标中的一个点得到下表
|点|X坐标|Y坐标|点类型|
|----|
|A|3|104|Romance|
|B|2|100|Romance|
|C|1|81|Romance|
|D|101|10|Action|
|E|99|5|Action|
|F|98|2|Action|
|G|18|90|Unknown|
Step 2
使用ComputeEuclideanDistance()函数分别计算G点到其他点的距离
import math
def ComputeEuclideanDistance(x1, y1, x2, y2):
d = math.sqrt(math.pow((x1-x2), 2) + math.pow((y1-y2), 2))
return d
d_ag = ComputeEuclideanDistance(3, 104, 18, 90)
d_bg = ComputeEuclideanDistance(2, 100, 18, 90)
d_cg = ComputeEuclideanDistance(1, 81, 18, 90)
d_dg = ComputeEuclideanDistance(101, 10, 18, 90)
d_eg = ComputeEuclideanDistance(99, 5, 18, 90)
d_fg = ComputeEuclideanDistance(98, 2, 18, 90)
print('unknown_A:',d_ag)
print('unknown_B:',d_bg)
print('unknown_C:',d_cg)
print('unknown_D:',d_dg)
print('unknown_E:',d_eg)
print('unknown_F:',d_fg)
**运行结果**
unknown_A: 20.518284528683193
unknown_B: 18.867962264113206
unknown_C: 19.235384061671343
unknown_D: 115.27792503337315
unknown_E: 117.41379816699569
unknown_F: 118.92854997854805
Step 3
若K值取3,则选出距离中最短的三个,即unknown_A: 20.518284528683193、unknown_B: 18.867962264113206、unknown_C: 19.235384061671343
根据少数服从多数的原则,G应属于A、B、C三个点所代表的类型,即Romance类型
4、算法的优缺点
优点:
- 算法优点
- 简单
- 易于理解
- 容易实现
- 通过对K的选择可具备丢噪音数据的健壮性
缺点:
5、案例
数据集介绍:
Iris数据集数sklearn自带的数据集,其中包含150个样本,样本内容为
|萼片长度(sepal length)|萼片宽度(sepal width)|花瓣长度(petal length)|花瓣宽度(petal width)|类别(type)|
|—|----|
其中花的类别分为:Iris setosa(0), Iris versicolor(1), Iris virginica(2).三种
下面通过sklearn库的Iris数据集建立最邻近算法模型以预测萼片长度为0.1,萼片宽度为0.2,花瓣长度为0.3,花瓣宽度为0.4的为何种花型。
from sklearn import neighbors
from sklearn import datasets
knn = neighbors.KNeighborsClassifier()
iris = datasets.load_iris()
#print iris
knn.fit(iris.data, iris.target)
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
#print "hello"
#print ("predictedLabel is :" + predictedLabel)
print predictedLabel
*******运行结果*********
[0]
代码运行结果返回值为0,故可知,所预测的花型为Iris setosa
6、代码实现KNN算法
依旧以上述iris数据集为例,随机取150个样本中的一部分作为training data,另一部分作为test data
-------->数据集下载
import csv
import random
import math
import operator
def loadDataset(filename, split, trainingSet = [], testSet = []):
with open(filename, 'rt') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow((instance1[x]-instance2[x]), 2)
return math.sqrt(distance)
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)):
#testinstance
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
#distances.append(dist)
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
def getResponse(neighbors):
classVotes = {
}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0]
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet)))*100.0
def main():
#prepare data
trainingSet = []
testSet = []
split = 0.67
loadDataset(r'数据文件路径', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
#generate predictions
predictions = []
k = 3
for x in range(len(testSet)):
# trainingsettrainingSet[x]
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print ('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
print ('predictions: ' + repr(predictions))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%')
if __name__ == '__main__':
main()