python学习笔记_第26天(线性表_顺序表)

文章目录

  • 线性表
    • 顺序表
      • 顺序表的基本形式
      • 顺序表的结构与实现
        • 顺序表的结构
        • 顺序表的两种基本实现方式
        • 元素存储区扩充
        • 元素存储区替换
      • 顺序表的操作
        • 增加元素
        • 删除元素
      • Python中的顺序表
        • list的基本实现技术
    • 链表

线性表

数据类型决定了数据在计算机内存中的占用空间,和取数时计算机的读取规则(如连续的4个字节存储的是一个整数还是4个字符)。一个普通整形占4个字节,一个字节8位;一个字符占1个字节,即8位;地址占用4个字节。
将一组数据元素作为整体管理和使用,最简单的解决方案便是将这样一组元素看成一个序列,用元素在序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系。
这样的一组序列元素的组织形式,可以抽象为线性表。一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系。线性表是最基本的数据结构之一,在实际程序中应用非常广泛,还常被用作更复杂的数据结构的实现基础。
根据线性表的实际存储方式,分为两种实现模型:顺序表+链表

顺序表

顺序表,将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示。

顺序表的基本形式

python学习笔记_第26天(线性表_顺序表)_第1张图片

  • 当元素的大小统一,采用顺序表的基本形式
    数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:Loc(ei) = Loc(e0) + c*i。所以访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)

  • 当元素的大小不统一,则须采用元素外置的数据形式
    将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过Loc(ei) = Loc(e0) + c*i,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。注意,此时c不再是数据元素的大小,而是存储一个链接地址所需的存储量
    这样的元素外置顺序表也被称为对实际数据的索引,这是最简单的索引结构。

顺序表的结构与实现

顺序表的结构

python学习笔记_第26天(线性表_顺序表)_第2张图片
一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素个数两项。

顺序表的两种基本实现方式

python学习笔记_第26天(线性表_顺序表)_第3张图片

  1. 一体式结构 – 存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据形成一个完整的顺序表对象。
    一体式结构整体性强,易于管理。但是由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就受限了。
  2. 为分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

元素存储区扩充

当增添数据,已申请的内存空间不够时,就涉及到存储区的扩充。
采用一体式结构的顺序表,需要向内存申请新空间,生成一个新对象,将原数据复制后回收原数据的占用空间。
采用分离式结构的顺序表,只要改变数据存储区的地址指向,则可以在不改变表对象的前提下(id不变)对其数据存储区进行了扩充。只要程序的运行环境(计算机系统)还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。采用这种技术实现的顺序表称为动态顺序表,因为其容量可以在使用中动态变化。

  • 扩充的两种策略
  1. 每次扩充增加固定数目的存储位置,如每次扩充增加10个元素位置,这种策略可称为线性增长
    特点:节省空间,但是扩充操作频繁,操作次数多
  2. 每次扩充容量加倍,如每次扩充增加一倍存储空间。
    特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。

元素存储区替换

当存储区满需要扩充时就涉及到了存储区的替换。
一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(信息部分+数据部分)地址都改变。
分离式结构更换数据区,只需将表信息区中的数据区链接地址更新即可,而该顺序表对象地址不变。

顺序表的操作

增加元素

python学习笔记_第26天(线性表_顺序表)_第4张图片a. 尾端加入元素,时间复杂度为O(1)
b. 非保序的加入元素(不常见),时间复杂度为O(1)
c. 保序的元素加入,时间复杂度为O(n)

删除元素

python学习笔记_第26天(线性表_顺序表)_第5张图片
a. 删除表尾元素,时间复杂度为O(1)
b. 非保序的元素删除(不常见),时间复杂度为O(1)
c. 保序的元素删除,时间复杂度为O(n)

Python中的顺序表

Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。
list是可变的类型,tuple是不可变类型。tuple不支持改变其内部状态的任何操作,其他方面与list的性质类似。

list的基本实现技术

Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),还具有以下行为特征:

  1. 基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1)。
    为满足该特征,采用顺序表,表中元素保存在一块连续的存储区中。
  2. 允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id值)不变。
    为满足该特征,采用分离式存储,可动态添加数据,且数据更改但id值不变。
  3. 内部存储元素无数据类型限制。
    为满足该特征,采用元素外置方式存储,连续数据存储区内存储大小统一的链接地址。

在Python的官方实现中,list是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。
在Python的官方实现中,list实现采用了如下扩充策略:在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已大于等于阀值为50000,则改变策略,采用加一倍的方法。引入这种改变策略的方式,是为了避免出现过多空闲的存储位置。

链表

链表,将元素存放在通过链接构造起来的一系列存储块中。

你可能感兴趣的:(学习笔记,python)