# -*- coding: utf-8 -*-
"""
Created on 2020/11/20 14:04
@Author: CY
@email: [email protected]
"""
# Hyperparameters
## Model hyperparameters
## Algorithm hyperparameters
import tensorflow as tf
from tensorflow import keras
import IPython
# !pip install -q -U keras-tuner
import kerastuner as kt
print("#1. 数据集 Fashion MNIST dataset.")
(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0
print("#2. 模型定义")
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(units=hp_units, activation='relu'))
model.add(keras.layers.Dense(10))
# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3,
directory='my_dir',
project_name='intro_to_kt')
class ClearTrainingOutput(tf.keras.callbacks.Callback):
def on_train_end(*args, **kwargs):
IPython.display.clear_output(wait= True)
tuner.search(img_train, label_train, epochs = 10, validation_data = (img_test, label_test), callbacks = [ClearTrainingOutput()])
# Get the optimal hyperparameters
best_hps = tuner.get_best_hyperparameters(num_trials = 1)[0]
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
# Build the model with the optimal hyperparameters and train it on the data
model = tuner.hypermodel.build(best_hps)
model.fit(img_train, label_train, epochs = 10, validation_data = (img_test, label_test))
Epoch 1/2
1875/1875 [==============================] - 4s 2ms/step - loss: 0.6146 - accuracy: 0.7994 - val_loss: 0.4803 - val_accuracy: 0.8346
Epoch 2/2
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4323 - accuracy: 0.8503 - val_loss: 0.4366 - val_accuracy: 0.8492
[Trial complete]
[Trial summary]
|-Trial ID: 191820c4c1db0f9e0887d266e14cbd00
|-Score: 0.8492000102996826
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 384
Epoch 1/2
1875/1875 [==============================] - 2s 875us/step - loss: 0.7257 - accuracy: 0.7698 - val_loss: 0.5402 - val_accuracy: 0.8172
Epoch 2/2
1875/1875 [==============================] - 2s 942us/step - loss: 0.4874 - accuracy: 0.8370 - val_loss: 0.4871 - val_accuracy: 0.8330
[Trial complete]
[Trial summary]
|-Trial ID: 779b0ec8dbfceee7e4b7166b20aa3d8f
|-Score: 0.8330000042915344
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 96
Epoch 1/2
1875/1875 [==============================] - 5s 3ms/step - loss: 0.5946 - accuracy: 0.8058 - val_loss: 0.4797 - val_accuracy: 0.8346
Epoch 2/2
1875/1875 [==============================] - 5s 3ms/step - loss: 0.4261 - accuracy: 0.8531 - val_loss: 0.4372 - val_accuracy: 0.8464
[Trial complete]
[Trial summary]
|-Trial ID: d3a96eb83cc740ec1e5db373d9fd55c3
|-Score: 0.8464000225067139
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 448
Epoch 1/2
1875/1875 [==============================] - 3s 2ms/step - loss: 0.6247 - accuracy: 0.7956 - val_loss: 0.4990 - val_accuracy: 0.8292
Epoch 2/2
1875/1875 [==============================] - 3s 1ms/step - loss: 0.4386 - accuracy: 0.8506 - val_loss: 0.4458 - val_accuracy: 0.8466
[Trial complete]
[Trial summary]
|-Trial ID: 5e8585e74ca9cba4e8a4064cbc7bd668
|-Score: 0.8465999960899353
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 320
Epoch 1/2
1875/1875 [==============================] - 6s 3ms/step - loss: 0.5458 - accuracy: 0.8098 - val_loss: 0.4780 - val_accuracy: 0.8282
Epoch 2/2
1875/1875 [==============================] - 5s 3ms/step - loss: 0.4339 - accuracy: 0.8444 - val_loss: 0.4672 - val_accuracy: 0.8367
[Trial complete]
[Trial summary]
|-Trial ID: 0d8ec7608c018b20fd9b4cad6e66a9b6
|-Score: 0.8367000222206116
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 480
Epoch 1/2
1875/1875 [==============================] - 2s 983us/step - loss: 0.5315 - accuracy: 0.8114 - val_loss: 0.4696 - val_accuracy: 0.8292
Epoch 2/2
1875/1875 [==============================] - 2s 983us/step - loss: 0.4341 - accuracy: 0.8454 - val_loss: 0.4831 - val_accuracy: 0.8317
[Trial complete]
[Trial summary]
|-Trial ID: e53c8d4b661b5520e392b34a65f0ca1d
|-Score: 0.8317000269889832
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 160
Epoch 1/2
1875/1875 [==============================] - 2s 883us/step - loss: 0.5238 - accuracy: 0.8195 - val_loss: 0.4598 - val_accuracy: 0.8344
Epoch 2/2
1875/1875 [==============================] - 2s 842us/step - loss: 0.3932 - accuracy: 0.8602 - val_loss: 0.3968 - val_accuracy: 0.8580
[Trial complete]
[Trial summary]
|-Trial ID: 57f46babcb66e2f2829177035445f65c
|-Score: 0.8579999804496765
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 64
Epoch 1/2
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4923 - accuracy: 0.8249 - val_loss: 0.4501 - val_accuracy: 0.8431
Epoch 2/2
1875/1875 [==============================] - 2s 983us/step - loss: 0.3672 - accuracy: 0.8670 - val_loss: 0.3996 - val_accuracy: 0.8564
[Trial complete]
[Trial summary]
|-Trial ID: 59551e7ff2ab521be9ae98c3c76f764b
|-Score: 0.8564000129699707
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 192
Epoch 1/2
1875/1875 [==============================] - 2s 942us/step - loss: 0.5265 - accuracy: 0.8126 - val_loss: 0.6236 - val_accuracy: 0.7760
Epoch 2/2
1875/1875 [==============================] - 2s 917us/step - loss: 0.4402 - accuracy: 0.8414 - val_loss: 0.4718 - val_accuracy: 0.8286
[Trial complete]
[Trial summary]
|-Trial ID: b566a3dd369847ae7e6064563cb3d444
|-Score: 0.8285999894142151
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 128
Epoch 1/2
1875/1875 [==============================] - 2s 825us/step - loss: 0.5264 - accuracy: 0.8130 - val_loss: 0.4499 - val_accuracy: 0.8422
Epoch 2/2
1875/1875 [==============================] - 2s 843us/step - loss: 0.4450 - accuracy: 0.8419 - val_loss: 0.4610 - val_accuracy: 0.8329
[Trial complete]
[Trial summary]
|-Trial ID: a29d6687b5dd7f074f320d273567ff01
|-Score: 0.842199981212616
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 64
Epoch 1/2
1875/1875 [==============================] - 3s 1ms/step - loss: 0.6550 - accuracy: 0.7891 - val_loss: 0.5078 - val_accuracy: 0.8273
Epoch 2/2
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4537 - accuracy: 0.8454 - val_loss: 0.4598 - val_accuracy: 0.8418
[Trial complete]
[Trial summary]
|-Trial ID: d64f04c0c7f461eabfca4f7c97a28f43
|-Score: 0.8417999744415283
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 224
Epoch 1/2
1875/1875 [==============================] - 2s 945us/step - loss: 0.4904 - accuracy: 0.8273 - val_loss: 0.4384 - val_accuracy: 0.8435
Epoch 2/2
1875/1875 [==============================] - 2s 946us/step - loss: 0.3706 - accuracy: 0.8664 - val_loss: 0.3780 - val_accuracy: 0.8651
[Trial complete]
[Trial summary]
|-Trial ID: ff8dd848cb342726b8552ff47ec287f1
|-Score: 0.8651000261306763
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 2
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 160
Epoch 3/4
1875/1875 [==============================] - 2s 998us/step - loss: 0.4912 - accuracy: 0.8274 - val_loss: 0.4180 - val_accuracy: 0.8528
Epoch 4/4
1875/1875 [==============================] - 2s 917us/step - loss: 0.3691 - accuracy: 0.8672 - val_loss: 0.3944 - val_accuracy: 0.8602
[Trial complete]
[Trial summary]
|-Trial ID: 6ecbc23cf3d4d28965a809d247ed8cd8
|-Score: 0.8601999878883362
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 4
|-tuner/initial_epoch: 2
|-tuner/round: 1
|-tuner/trial_id: ff8dd848cb342726b8552ff47ec287f1
|-units: 160
Epoch 3/4
1875/1875 [==============================] - 2s 816us/step - loss: 0.5227 - accuracy: 0.8191 - val_loss: 0.4512 - val_accuracy: 0.8399
Epoch 4/4
1875/1875 [==============================] - 2s 851us/step - loss: 0.3965 - accuracy: 0.8584 - val_loss: 0.4245 - val_accuracy: 0.8439
[Trial complete]
[Trial summary]
|-Trial ID: 002b7310fa5aa135e0b011b5c74053a9
|-Score: 0.8439000248908997
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 4
|-tuner/initial_epoch: 2
|-tuner/round: 1
|-tuner/trial_id: 57f46babcb66e2f2829177035445f65c
|-units: 64
Epoch 3/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4887 - accuracy: 0.8270 - val_loss: 0.4204 - val_accuracy: 0.8476
Epoch 4/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.3679 - accuracy: 0.8658 - val_loss: 0.3753 - val_accuracy: 0.8646
[Trial complete]
[Trial summary]
|-Trial ID: 4fffdb277afe57a86bbac8e5c6988256
|-Score: 0.8646000027656555
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 4
|-tuner/initial_epoch: 2
|-tuner/round: 1
|-tuner/trial_id: 59551e7ff2ab521be9ae98c3c76f764b
|-units: 192
Epoch 3/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.6099 - accuracy: 0.7977 - val_loss: 0.4864 - val_accuracy: 0.8295
Epoch 4/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.4346 - accuracy: 0.8508 - val_loss: 0.4445 - val_accuracy: 0.8406
[Trial complete]
[Trial summary]
|-Trial ID: e34528c7b96b72621522837e3050c77d
|-Score: 0.8406000137329102
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 2
|-tuner/epochs: 4
|-tuner/initial_epoch: 2
|-tuner/round: 1
|-tuner/trial_id: 191820c4c1db0f9e0887d266e14cbd00
|-units: 384
Epoch 5/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4848 - accuracy: 0.8283 - val_loss: 0.4595 - val_accuracy: 0.8349
Epoch 6/10
1875/1875 [==============================] - 2s 983us/step - loss: 0.3695 - accuracy: 0.8666 - val_loss: 0.4070 - val_accuracy: 0.8504
Epoch 7/10
1875/1875 [==============================] - 2s 992us/step - loss: 0.3314 - accuracy: 0.8776 - val_loss: 0.3604 - val_accuracy: 0.8675
Epoch 8/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.3057 - accuracy: 0.8881 - val_loss: 0.3576 - val_accuracy: 0.8721
Epoch 9/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.2885 - accuracy: 0.8935 - val_loss: 0.3380 - val_accuracy: 0.8804
Epoch 10/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.2744 - accuracy: 0.8990 - val_loss: 0.3404 - val_accuracy: 0.8789
[Trial complete]
[Trial summary]
|-Trial ID: ce7c97b6b272a033a21f8740aefb0fee
|-Score: 0.8804000020027161
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 10
|-tuner/initial_epoch: 4
|-tuner/round: 2
|-tuner/trial_id: 4fffdb277afe57a86bbac8e5c6988256
|-units: 192
Epoch 5/10
1875/1875 [==============================] - 2s 975us/step - loss: 0.4869 - accuracy: 0.8296 - val_loss: 0.4113 - val_accuracy: 0.8551
Epoch 6/10
1875/1875 [==============================] - 2s 942us/step - loss: 0.3654 - accuracy: 0.8677 - val_loss: 0.3796 - val_accuracy: 0.8647
Epoch 7/10
1875/1875 [==============================] - 2s 925us/step - loss: 0.3290 - accuracy: 0.8804 - val_loss: 0.3623 - val_accuracy: 0.8699
Epoch 8/10
1875/1875 [==============================] - 2s 983us/step - loss: 0.3056 - accuracy: 0.8869 - val_loss: 0.3561 - val_accuracy: 0.8705
Epoch 9/10
1875/1875 [==============================] - 2s 958us/step - loss: 0.2868 - accuracy: 0.8945 - val_loss: 0.3568 - val_accuracy: 0.8735
Epoch 10/10
1875/1875 [==============================] - 2s 975us/step - loss: 0.2736 - accuracy: 0.8979 - val_loss: 0.3435 - val_accuracy: 0.8739
[Trial complete]
[Trial summary]
|-Trial ID: 4984706cf32ca96cad85570be7030a65
|-Score: 0.8738999962806702
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 2
|-tuner/epochs: 10
|-tuner/initial_epoch: 4
|-tuner/round: 2
|-tuner/trial_id: 6ecbc23cf3d4d28965a809d247ed8cd8
|-units: 160
Epoch 1/4
1875/1875 [==============================] - 2s 850us/step - loss: 0.5127 - accuracy: 0.8209 - val_loss: 0.4297 - val_accuracy: 0.8448
Epoch 2/4
1875/1875 [==============================] - 2s 867us/step - loss: 0.3832 - accuracy: 0.8624 - val_loss: 0.3865 - val_accuracy: 0.8606
Epoch 3/4
1875/1875 [==============================] - 1s 784us/step - loss: 0.3428 - accuracy: 0.8755 - val_loss: 0.4015 - val_accuracy: 0.8521
Epoch 4/4
1875/1875 [==============================] - 1s 792us/step - loss: 0.3193 - accuracy: 0.8836 - val_loss: 0.3597 - val_accuracy: 0.8709
[Trial complete]
[Trial summary]
|-Trial ID: 4d4cbfecb20eba350c19ef24eb93b5fe
|-Score: 0.8708999752998352
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 96
Epoch 1/4
1875/1875 [==============================] - 5s 3ms/step - loss: 0.4795 - accuracy: 0.8296 - val_loss: 0.4015 - val_accuracy: 0.8555
Epoch 2/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3593 - accuracy: 0.8692 - val_loss: 0.3843 - val_accuracy: 0.8551
Epoch 3/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3249 - accuracy: 0.8806 - val_loss: 0.3704 - val_accuracy: 0.8662
Epoch 4/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.2993 - accuracy: 0.8898 - val_loss: 0.3475 - val_accuracy: 0.8764
[Trial complete]
[Trial summary]
|-Trial ID: 88acc74da2222e8e3065b173d0d7a29e
|-Score: 0.8763999938964844
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 416
Epoch 1/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.5466 - accuracy: 0.8072 - val_loss: 0.4805 - val_accuracy: 0.8332
Epoch 2/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4400 - accuracy: 0.8423 - val_loss: 0.4656 - val_accuracy: 0.8398
Epoch 3/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4175 - accuracy: 0.8500 - val_loss: 0.4765 - val_accuracy: 0.8367
Epoch 4/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4046 - accuracy: 0.8546 - val_loss: 0.4595 - val_accuracy: 0.8384
[Trial complete]
[Trial summary]
|-Trial ID: 2b1c17016314b1718e50f25dcec92d7b
|-Score: 0.8398000001907349
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 256
Epoch 1/4
1875/1875 [==============================] - 5s 3ms/step - loss: 0.5373 - accuracy: 0.8137 - val_loss: 0.4528 - val_accuracy: 0.8397
Epoch 2/4
1875/1875 [==============================] - 5s 2ms/step - loss: 0.4338 - accuracy: 0.8440 - val_loss: 0.4934 - val_accuracy: 0.8261
Epoch 3/4
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4134 - accuracy: 0.8540 - val_loss: 0.4633 - val_accuracy: 0.8330
Epoch 4/4
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3976 - accuracy: 0.8587 - val_loss: 0.4684 - val_accuracy: 0.8372
[Trial complete]
[Trial summary]
|-Trial ID: 6da41f58d68b1e0b4716461f158371d3
|-Score: 0.8396999835968018
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 416
Epoch 1/4
1875/1875 [==============================] - 2s 800us/step - loss: 0.5390 - accuracy: 0.8118 - val_loss: 0.4523 - val_accuracy: 0.8395
Epoch 2/4
1875/1875 [==============================] - 2s 1ms/step - loss: 0.4122 - accuracy: 0.8546 - val_loss: 0.4267 - val_accuracy: 0.8498
Epoch 3/4
1875/1875 [==============================] - 2s 992us/step - loss: 0.3762 - accuracy: 0.8647 - val_loss: 0.4199 - val_accuracy: 0.8429
Epoch 4/4
1875/1875 [==============================] - 1s 667us/step - loss: 0.3536 - accuracy: 0.8725 - val_loss: 0.3799 - val_accuracy: 0.8678
[Trial complete]
[Trial summary]
|-Trial ID: 9f027191b67b74ce4794e5affaa42a49
|-Score: 0.8677999973297119
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 32
Epoch 1/4
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4789 - accuracy: 0.8303 - val_loss: 0.4434 - val_accuracy: 0.8387
Epoch 2/4
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3612 - accuracy: 0.8680 - val_loss: 0.3609 - val_accuracy: 0.8679
Epoch 3/4
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3224 - accuracy: 0.8812 - val_loss: 0.3557 - val_accuracy: 0.8750
Epoch 4/4
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2992 - accuracy: 0.8892 - val_loss: 0.3677 - val_accuracy: 0.8670
[Trial complete]
[Trial summary]
|-Trial ID: 8b44a5bbd769e9fd3da6efc318b10647
|-Score: 0.875
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 4
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 352
Epoch 5/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.4782 - accuracy: 0.8289 - val_loss: 0.4330 - val_accuracy: 0.8473
Epoch 6/10
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3622 - accuracy: 0.8679 - val_loss: 0.3994 - val_accuracy: 0.8564
Epoch 7/10
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3250 - accuracy: 0.8797 - val_loss: 0.3655 - val_accuracy: 0.8673
Epoch 8/10
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3014 - accuracy: 0.8880 - val_loss: 0.3417 - val_accuracy: 0.8759
Epoch 9/10
1875/1875 [==============================] - 5s 2ms/step - loss: 0.2825 - accuracy: 0.8954 - val_loss: 0.3363 - val_accuracy: 0.8777
Epoch 10/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2682 - accuracy: 0.8992 - val_loss: 0.3413 - val_accuracy: 0.8767
[Trial complete]
[Trial summary]
|-Trial ID: c5909f061215673b01109e1a65f5676d
|-Score: 0.8776999711990356
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 10
|-tuner/initial_epoch: 4
|-tuner/round: 1
|-tuner/trial_id: 88acc74da2222e8e3065b173d0d7a29e
|-units: 416
Epoch 5/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4758 - accuracy: 0.8317 - val_loss: 0.4028 - val_accuracy: 0.8563
Epoch 6/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3600 - accuracy: 0.8681 - val_loss: 0.3870 - val_accuracy: 0.8608
Epoch 7/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3208 - accuracy: 0.8810 - val_loss: 0.3579 - val_accuracy: 0.8703
Epoch 8/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3006 - accuracy: 0.8868 - val_loss: 0.3434 - val_accuracy: 0.8761
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2815 - accuracy: 0.8952 - val_loss: 0.3626 - val_accuracy: 0.8712
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2678 - accuracy: 0.8998 - val_loss: 0.3343 - val_accuracy: 0.8820
[Trial complete]
[Trial summary]
|-Trial ID: 4333cf5ce3c7e1004becdc45a151f7e9
|-Score: 0.8820000290870667
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.001
|-tuner/bracket: 1
|-tuner/epochs: 10
|-tuner/initial_epoch: 4
|-tuner/round: 1
|-tuner/trial_id: 8b44a5bbd769e9fd3da6efc318b10647
|-units: 352
Epoch 1/10
1875/1875 [==============================] - 2s 917us/step - loss: 0.7114 - accuracy: 0.7708 - val_loss: 0.5391 - val_accuracy: 0.8180
Epoch 2/10
1875/1875 [==============================] - 2s 950us/step - loss: 0.4786 - accuracy: 0.8386 - val_loss: 0.4967 - val_accuracy: 0.8257
Epoch 3/10
1875/1875 [==============================] - 2s 933us/step - loss: 0.4343 - accuracy: 0.8505 - val_loss: 0.4532 - val_accuracy: 0.8405
Epoch 4/10
1875/1875 [==============================] - 2s 925us/step - loss: 0.4087 - accuracy: 0.8582 - val_loss: 0.4308 - val_accuracy: 0.8474
Epoch 5/10
1875/1875 [==============================] - 2s 942us/step - loss: 0.3899 - accuracy: 0.8651 - val_loss: 0.4148 - val_accuracy: 0.8524
Epoch 6/10
1875/1875 [==============================] - 2s 967us/step - loss: 0.3752 - accuracy: 0.8688 - val_loss: 0.4058 - val_accuracy: 0.8561
Epoch 7/10
1875/1875 [==============================] - 2s 950us/step - loss: 0.3629 - accuracy: 0.8734 - val_loss: 0.3968 - val_accuracy: 0.8604
Epoch 8/10
1875/1875 [==============================] - 2s 917us/step - loss: 0.3526 - accuracy: 0.8770 - val_loss: 0.3923 - val_accuracy: 0.8607
Epoch 9/10
1875/1875 [==============================] - 2s 925us/step - loss: 0.3435 - accuracy: 0.8795 - val_loss: 0.3870 - val_accuracy: 0.8609
Epoch 10/10
1875/1875 [==============================] - 2s 892us/step - loss: 0.3354 - accuracy: 0.8820 - val_loss: 0.3771 - val_accuracy: 0.8657
[Trial complete]
[Trial summary]
|-Trial ID: af4ca9415caf6a4e05807e452f15b095
|-Score: 0.8657000064849854
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 0
|-tuner/epochs: 10
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 128
Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.6247 - accuracy: 0.7961 - val_loss: 0.4982 - val_accuracy: 0.8314
Epoch 2/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4378 - accuracy: 0.8496 - val_loss: 0.4520 - val_accuracy: 0.8397
Epoch 3/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3965 - accuracy: 0.8641 - val_loss: 0.4244 - val_accuracy: 0.8521
Epoch 4/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3709 - accuracy: 0.8712 - val_loss: 0.4001 - val_accuracy: 0.8611
Epoch 5/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3512 - accuracy: 0.8766 - val_loss: 0.3927 - val_accuracy: 0.8656
Epoch 6/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3368 - accuracy: 0.8821 - val_loss: 0.3743 - val_accuracy: 0.8685
Epoch 7/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3242 - accuracy: 0.8858 - val_loss: 0.3671 - val_accuracy: 0.8716
Epoch 8/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3129 - accuracy: 0.8892 - val_loss: 0.3654 - val_accuracy: 0.8715
Epoch 9/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3029 - accuracy: 0.8929 - val_loss: 0.3587 - val_accuracy: 0.8701
Epoch 10/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2933 - accuracy: 0.8952 - val_loss: 0.3430 - val_accuracy: 0.8787
[Trial complete]
[Trial summary]
|-Trial ID: 482b6110f8977c221413c42f85c52c60
|-Score: 0.8787000179290771
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.0001
|-tuner/bracket: 0
|-tuner/epochs: 10
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 352
Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.5354 - accuracy: 0.8099 - val_loss: 0.4774 - val_accuracy: 0.8261
Epoch 2/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4370 - accuracy: 0.8432 - val_loss: 0.5032 - val_accuracy: 0.8288
Epoch 3/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4183 - accuracy: 0.8498 - val_loss: 0.5043 - val_accuracy: 0.8263
Epoch 4/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4032 - accuracy: 0.8550 - val_loss: 0.4821 - val_accuracy: 0.8313
Epoch 5/10
1875/1875 [==============================] - 5s 2ms/step - loss: 0.3887 - accuracy: 0.8585 - val_loss: 0.4602 - val_accuracy: 0.8339
Epoch 6/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3865 - accuracy: 0.8603 - val_loss: 0.4423 - val_accuracy: 0.8467
Epoch 7/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3771 - accuracy: 0.8646 - val_loss: 0.4956 - val_accuracy: 0.8329
Epoch 8/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.3710 - accuracy: 0.8644 - val_loss: 0.4489 - val_accuracy: 0.8509
Epoch 9/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3698 - accuracy: 0.8662 - val_loss: 0.4763 - val_accuracy: 0.8322
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3630 - accuracy: 0.8680 - val_loss: 0.4581 - val_accuracy: 0.8453
[Trial complete]
[Trial summary]
|-Trial ID: f2959fbb15e860be5f80588c0516b81f
|-Score: 0.8508999943733215
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 0
|-tuner/epochs: 10
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 352
Epoch 1/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.5399 - accuracy: 0.8069 - val_loss: 0.4596 - val_accuracy: 0.8269
Epoch 2/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.4343 - accuracy: 0.8462 - val_loss: 0.4763 - val_accuracy: 0.8384
Epoch 3/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.4208 - accuracy: 0.8496 - val_loss: 0.4611 - val_accuracy: 0.8395
Epoch 4/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.4026 - accuracy: 0.8576 - val_loss: 0.4485 - val_accuracy: 0.8433
Epoch 5/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.3954 - accuracy: 0.8572 - val_loss: 0.4652 - val_accuracy: 0.8392
Epoch 6/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.3883 - accuracy: 0.8609 - val_loss: 0.4564 - val_accuracy: 0.8350
Epoch 7/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.3829 - accuracy: 0.8606 - val_loss: 0.4661 - val_accuracy: 0.8345
Epoch 8/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.3813 - accuracy: 0.8623 - val_loss: 0.4922 - val_accuracy: 0.8371
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3765 - accuracy: 0.8653 - val_loss: 0.4553 - val_accuracy: 0.8551
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3689 - accuracy: 0.8671 - val_loss: 0.4418 - val_accuracy: 0.8561
[Trial complete]
[Trial summary]
|-Trial ID: ebf7d288ffbf54d692fcab93a0eaf54a
|-Score: 0.8561000227928162
|-Best step: 0
> Hyperparameters:
|-learning_rate: 0.01
|-tuner/bracket: 0
|-tuner/epochs: 10
|-tuner/initial_epoch: 0
|-tuner/round: 0
|-units: 320
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is 352 and the optimal learning rate for the optimizer
is 0.001.
Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4782 - accuracy: 0.8300 - val_loss: 0.4132 - val_accuracy: 0.8549
Epoch 2/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3597 - accuracy: 0.8688 - val_loss: 0.4138 - val_accuracy: 0.8470
Epoch 3/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3246 - accuracy: 0.8811 - val_loss: 0.3640 - val_accuracy: 0.8633
Epoch 4/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3008 - accuracy: 0.8893 - val_loss: 0.3614 - val_accuracy: 0.8719
Epoch 5/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2839 - accuracy: 0.8945 - val_loss: 0.3623 - val_accuracy: 0.8747
Epoch 6/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2673 - accuracy: 0.9007 - val_loss: 0.3451 - val_accuracy: 0.8749
Epoch 7/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2538 - accuracy: 0.9045 - val_loss: 0.3264 - val_accuracy: 0.8851
Epoch 8/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2436 - accuracy: 0.9089 - val_loss: 0.3344 - val_accuracy: 0.8831
Epoch 9/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2339 - accuracy: 0.9123 - val_loss: 0.3476 - val_accuracy: 0.8797
Epoch 10/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2261 - accuracy: 0.9155 - val_loss: 0.3461 - val_accuracy: 0.8780
Process finished with exit code 0