numpy官方网站:download numpy
#pip3 install numpy pandas
# 导入
import numpy as np
# 定义一个矩阵
array = np.array([[1, 2, 3], [2, 3, 4]])
print(array)
[[1 2 3]
[2 3 4]]
print("number of dim:", array.ndim) # 维度
print("shape:", array.shape) # 形状
print("size:", array.size) # 元素个数
number of dim: 2
shape: (2, 3)
size: 6
import numpy as np
a= np.array([2, 23, 4], dtype=np.int64) # 对类型做定义
print(a)
print(a.dtype)
[ 2 23 4]
int64
# 矩阵
a = np.array([[2, 34, 4],
[2, 32, 4]])
print(a)
[[ 2 34 4]
[ 2 32 4]]
# 0矩阵
a = np.zeros((3, 4))
print(a)
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
# 1矩阵
a = np.ones((3, 4), dtype=np.float)
print(a)
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
# empty矩阵
b = np.empty((3, 4))
print(b)
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
# 有序矩阵
b = np.arange(10, 20, 2) # 从10到20,步长为2
print(b)
[10 12 14 16 18]
# reshape改变形状
b = np.arange(12).reshape((3, 4))
print(b)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
# 线段
a = np.linspace(1, 10, 6).reshape((2, 3)) # 从1到10,要6个数,形状为2行3列
print(a)
[[ 1. 2.8 4.6]
[ 6.4 8.2 10. ]]
import numpy as np
a = np.array([10, 20, 30, 40])
b = np.arange(4)
c = a - b # 同样支持 + * **
print(a, b, c)
[10 20 30 40] [0 1 2 3] [10 19 28 37]
c = 10*np.sin(a) # 三角函数
print(c)
[-5.44021111 9.12945251 -9.88031624 7.4511316 ]
print(b)
print(b<3) # 比较
[0 1 2 3]
[ True True True False]
a = np.array([[1, 1], [0, 1]])
b = np.arange(4).reshape((2,2))
print(a)
print(b)
[[1 1]
[0 1]]
[[0 1]
[2 3]]
print(a*b) # 对应位置相乘
print(a.dot(b)) # 矩阵乘法
print(np.dot(a, b)) # 矩阵乘法另一种写法
[[0 1]
[0 3]]
[[2 4]
[2 3]]
[[2 4]
[2 3]]
a = np.random.random((2, 4)) # 随机[0,1),形状为2*4
print(a)
[[0.8410904 0.60731039 0.2572012 0.42907328]
[0.92080189 0.10937016 0.70279503 0.94849117]]
print(np.sum(a))
print(np.min(a))
print(np.max(a))
4.816133528743711
0.10937015671859662
0.9484911685139872
print(np.sum(a, axis=1)) # axis=1,对列作操作,相当于每一行求和
print(np.max(a, axis=0)) # axis=0,对行做操作,相当于每一列中求最大
[2.13467528 2.68145825]
[0.92080189 0.60731039 0.70279503 0.94849117]
A = np.arange(2, 14).reshape((3, 4))
print(np.argmin(A)) # 最小值索引
print(np.argmax(A)) # 最大值索引
0
11
print("A: ", A)
print("np.mean(A): ", np.mean(A)) # 平均值,可指定axis=0每列的平均,axis=1每行的平均
print("np.mean(A, axis=0): ", np.mean(A, axis=0)) # axis=0对行作操作,相当于每一列
print("np.mean(A, axis=1): ", np.mean(A, axis=1)) # axis=1对列作操作,相当于每一行
print("np.average(A): ", np.average(A)) # 平均值
print("np.median(A): ", np.median(A)) # 中位数
print("np.cumsum(A): ", np.cumsum(A)) # 累加
print("np.diff(A): ", np.diff(A)) # 累差
print("np.nonzero(A): ", np.nonzero(A)) # 非零元素的位置,第一个数组为行,第二个数组为列,一对一。
print("np.sort(A): ", np.sort(A)) # 排序.
print("np.transpose(A): ", np.transpose(A)) # 反向,转置
print("A.T: ", A.T) # 转置
print("np.clip(A, 5, 9, ): ", np.clip(A, 5, 9, )) # <5的成为5,>9的成为9
A: [[ 2 3 4 5]
[ 6 7 8 9]
[10 11 12 13]]
np.mean(A): 7.5
np.mean(A, axis=0): [6. 7. 8. 9.]
np.mean(A, axis=1): [ 3.5 7.5 11.5]
np.average(A): 7.5
np.median(A): 7.5
np.cumsum(A): [ 2 5 9 14 20 27 35 44 54 65 77 90]
np.diff(A): [[1 1 1]
[1 1 1]
[1 1 1]]
np.nonzero(A): (array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
np.sort(A): [[ 2 3 4 5]
[ 6 7 8 9]
[10 11 12 13]]
np.transpose(A): [[ 2 6 10]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]]
A.T: [[ 2 6 10]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]]
np.clip(A, 5, 9, ): [[5 5 5 5]
[6 7 8 9]
[9 9 9 9]]
A = np.arange(3, 15)
print(A)
[ 3 4 5 6 7 8 9 10 11 12 13 14]
print(A[3]) # 打印索引为3的元素的值
6
A = A.reshape((3, 4)) # 改变形状3*4
print("A:", A)
print("A[2]:", A[2]) # 打印索引为2的行
A: [[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
A[2]: [11 12 13 14]
print(A[1][1]) # 第二行第二列,不推荐使用这种方式进行索引
8
print(A[1, 1]) # 建议使用这种方式
8
print(A[2, :]) # 第三行所有数
[11 12 13 14]
print(A[1, 1:3]) # 做切片
[8 9]
for row in A: # 打印每一行
print(row)
[3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]
print(A.T)
for column in A.T: # 打印每一列
print(column)
[[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
[ 6 10 14]]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
[ 6 10 14]
print(A.flatten())
for item in A.flat: # 打印每一项,A.flat为迭代器
print(item)
[ 3 4 5 6 7 8 9 10 11 12 13 14]
3
4
5
6
7
8
9
10
11
12
13
14
print("out:")
A = np.array([1,1,1])
B = np.array([2,2,2])
print(np.vstack((A, B))) # 垂直方向上合并
out:
[[1 1 1]
[2 2 2]]
print("out:")
C = np.vstack((A, B))
print(C.shape) # 合并后的shape
out:
(2, 3)
print("out:")
D = np.hstack((A, B)) # 水平方向上合并
print(D)
print(D.shape) # 水平方向合并后的shape
out:
[1 1 1 2 2 2]
(6,)
print("out:")
print(A.T) # 一个维度,横向变竖向:失败
out:
[1 1 1]
print("out:")
print(A[np.newaxis, :]) # 多加一个维度
print(A[:, np.newaxis])
out:
[[1 1 1]]
[[1]
[1]
[1]]
print("out:")
print(np.hstack((A[:, np.newaxis], B[:, np.newaxis])))
out:
[[1 2]
[1 2]
[1 2]]
print("out:")
A = A[:, np.newaxis]
B = B[:, np.newaxis]
C = np.concatenate((A, B, B, A), axis=0) # 多个array合并
print(C)
out:
[[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[1]
[1]
[1]]
A = np.arange(12).reshape((3, 4))
print(A)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
print(np.split(A, 2, axis=1))
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
# print(np.split(A, 3, axis=1)) # 不能进行不等的分割
print(np.array_split(A, 3, axis=1)) # 进行不等量的分割
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
print(np.vsplit(A, 3))
print(np.hsplit(A, 2))
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
a = np.arange(4)
print(a)
[0 1 2 3]
b = a
c = a
d = b # 全是浅拷贝,共用同一块存储空间,改变任一个,其他的也改变
a[0] = 11
print(b)
print(d)
[11 1 2 3]
[11 1 2 3]
print(b is a) # b是完全的a
print(d is a) # d是完全的a
True
True
b = a.copy() # 深拷贝,b和a指向不同的内存地址
print(b is a)
False
a[2] = 22
print(b) # b没有被改变
[11 1 2 3]
import pandas as pd
import numpy as np
s = pd.Series([1, 3, 6, np.nan, 44, 1]) # 一个Series
print(s)
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
dates = pd.date_range('20160101', periods=6) # 时间日期range
print(dates)
DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=['a', 'b', 'c', 'd']) # 指定数据、索引和列名
print(df)
a b c d
2016-01-01 -1.742936 1.751451 -1.369113 0.626934
2016-01-02 0.550725 -0.640860 -0.309800 1.268160
2016-01-03 -0.194772 1.615315 1.015855 -0.176221
2016-01-04 -0.339469 -1.418400 0.146489 0.957804
2016-01-05 -0.844710 -0.292351 -0.286376 -0.658872
2016-01-06 1.736696 1.144769 -0.178112 -1.267666
df1 = pd.DataFrame(np.random.randn(12).reshape((3, 4))) # 不指定索引和列名
print(df1)
0 1 2 3
0 0.453689 -0.691620 0.743595 -1.090077
1 -0.347534 1.358612 -0.187446 0.322624
2 1.309691 0.007173 -1.440739 -1.164850
# 键值对形式定义
df2 = pd.DataFrame({
'A':1.,
'B':pd.Timestamp('20130102'),
'C':pd.Series(1, index=list(range(4)), dtype='float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(["test","train","test", "train"]),
'F':'foo'})
print(df2)
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
print(df2.dtypes) # 列的类型
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
print(df2.index) # 列的序号
Int64Index([0, 1, 2, 3], dtype='int64')
print(df2.columns) # 列的名字
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
print(df2.values) # 元素值
[[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']]
df2.describe() # 仅能描述数值形式的列
A | C | D | |
---|---|---|---|
count | 4.0 | 4.0 | 4.0 |
mean | 1.0 | 1.0 | 3.0 |
std | 0.0 | 0.0 | 0.0 |
min | 1.0 | 1.0 | 3.0 |
25% | 1.0 | 1.0 | 3.0 |
50% | 1.0 | 1.0 | 3.0 |
75% | 1.0 | 1.0 | 3.0 |
max | 1.0 | 1.0 | 3.0 |
print(df2.T) # 转置
0 1 2 \
A 1 1 1
B 2013-01-02 00:00:00 2013-01-02 00:00:00 2013-01-02 00:00:00
C 1 1 1
D 3 3 3
E test train test
F foo foo foo
3
A 1
B 2013-01-02 00:00:00
C 1
D 3
E train
F foo
print(df2.sort_index(axis=1, ascending=False)) # 按列排序,逆序
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
print(df2.sort_index(axis=0, ascending=False)) # 按行排序,逆序
A B C D E F
3 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
0 1.0 2013-01-02 1.0 3 test foo
print(df2.sort_values(by='E')) # 对值排序,选关键字
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
3 1.0 2013-01-02 1.0 3 train foo
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates, columns=['A', 'B', 'C', 'D'])
print(df)
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
print(df['A']) # 选择列
print(df.A) # 同上
2013-01-01 0
2013-01-02 4
2013-01-03 8
2013-01-04 12
2013-01-05 16
2013-01-06 20
Freq: D, Name: A, dtype: int32
2013-01-01 0
2013-01-02 4
2013-01-03 8
2013-01-04 12
2013-01-05 16
2013-01-06 20
Freq: D, Name: A, dtype: int32
print(df[0:3]) # 按行切片
print(df['20130102':'20130104']) # 闭区间
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
A B C D
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
print(df.loc['20130102']) # 通过标签选择
A 4
B 5
C 6
D 7
Name: 2013-01-02 00:00:00, dtype: int32
print(df.loc[:, ['A', 'B']])
A B
2013-01-01 0 1
2013-01-02 4 5
2013-01-03 8 9
2013-01-04 12 13
2013-01-05 16 17
2013-01-06 20 21
print(df.loc['20130102', ['A', 'B']])
A 4
B 5
Name: 2013-01-02 00:00:00, dtype: int32
print(df.iloc[3]) # 通过position来选择
A 12
B 13
C 14
D 15
Name: 2013-01-04 00:00:00, dtype: int32
print(df.iloc[3, 1])
13
print(df.iloc[3:5, 1:3]) # 切片形式
B C
2013-01-04 13 14
2013-01-05 17 18
print(df.iloc[[1,3,5], 1:3]) # 不连续的切片
B C
2013-01-02 5 6
2013-01-04 13 14
2013-01-06 21 22
print(df.ix[:3, ['A', 'C']]) # 混合筛选
A C
2013-01-01 0 2
2013-01-02 4 6
2013-01-03 8 10
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
"""Entry point for launching an IPython kernel.
print(df)
print(df[df.A > 8]) # Boolean index打印在特征A上值大于8的所有行
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
A B C D
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates,columns=['A', 'B', 'C', 'D'])
print(df)
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
df.iloc[2, 2] = 1111
print(df)
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
df.loc['20130101', 'B'] = 2222
print(df)
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
df[df.A>4] = 0
print(df)
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 0 0 0 0
2013-01-04 0 0 0 0
2013-01-05 0 0 0 0
2013-01-06 0 0 0 0
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates,columns=['A', 'B', 'C', 'D'])
df.B[df.A > 4] = 0
print(df)
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 0 10 11
2013-01-04 12 0 14 15
2013-01-05 16 0 18 19
2013-01-06 20 0 22 23
df['F'] = np.nan
print(df)
A B C D F
2013-01-01 0 1 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 0 10 11 NaN
2013-01-04 12 0 14 15 NaN
2013-01-05 16 0 18 19 NaN
2013-01-06 20 0 22 23 NaN
df['E'] = pd.Series([1, 2, 3, 4, 5,6], index=dates)
print(df)
A B C D F E
2013-01-01 0 1 2 3 NaN 1
2013-01-02 4 5 6 7 NaN 2
2013-01-03 8 0 10 11 NaN 3
2013-01-04 12 0 14 15 NaN 4
2013-01-05 16 0 18 19 NaN 5
2013-01-06 20 0 22 23 NaN 6
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates,columns=['A', 'B', 'C', 'D'])
df.iloc[0, 1] = np.nan
df.iloc[1, 2] = np.nan
print(df)
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
print(df.dropna(axis=0, how='any')) # how={'any', 'all'},丢弃那一行数据
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
print(df.fillna(value=0))
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
print(df.isnull())
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
print(np.any(df.isnull()) == True) # 判断是否有缺失的值
True
data = pd.read_csv('student.csv') # 导入
print(data) # 自动加了索引
Student ID name age gender
0 1100 Kelly 22 Female
1 1101 Tom 21 Female
2 1102 Tilly 23 Male
3 1103 David 20 Male
4 1104 Catty 22 Female
data.to_pickle('student.pickle') # 导出为pandas的数据格式
df1 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.ones((3, 4))*1, columns=['a', 'b', 'c', 'd'])
df3 = pd.DataFrame(np.ones((3, 4))*2, columns=['a', 'b', 'c', 'd'])
print(df1)
print(df2)
print(df3)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
res = pd.concat([df1, df2, df3], axis=0) # 竖向合并
print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True) # index重新进行排序
print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
# join, ['inner', 'outer']
df1 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
df2 = pd.DataFrame(np.ones((3, 4))*1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4])
res = pd.concat([df1, df2], join='outer', sort=False) # 所有特征都保留
print(res)
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
res = pd.concat([df1, df2], join='inner', ignore_index=True) # 只保留公共特征
print(res)
b c d
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index]) # 左右合并
print(res)
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
res = df1.append(df2, ignore_index=True, sort=False)
print(res)
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
5 NaN 1.0 1.0 1.0 1.0
df3 = pd.DataFrame(np.ones((3, 4))*2, columns=['a', 'b', 'c', 'd'])
res = df1.append([df2, df3], ignore_index=True, sort=False)
print(res)
a b c d e
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
5 NaN 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0 NaN
7 2.0 2.0 2.0 2.0 NaN
8 2.0 2.0 2.0 2.0 NaN
s1 = pd.Series([1, 2, 3,4], index=['a', 'b', 'c', 'd']) # 一行数据
res = df1.append(s1, ignore_index=True)
print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0
import pandas as pd
left = pd.DataFrame({
'key':['K0', 'K1', 'K2', 'K3'],
'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({
'key':['K0', 'K1', 'K2', 'K3'],
'A':['C0', 'C1', 'C2', 'C3'],
'B':['D0', 'D1', 'D2', 'D3']})
print(left)
print(right)
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 B3
key A B
0 K0 C0 D0
1 K1 C1 D1
2 K2 C2 D2
3 K3 C3 D3
res = pd.merge(left, right, on='key')
print(res)
key A_x B_x A_y B_y
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 C2 D2
3 K3 A3 B3 C3 D3
left = pd.DataFrame({
'key1':['K0', 'K0', 'K1', 'K2'],
'key2':['K0', 'K1', 'K0', 'K1'],
'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({
'key1':['K0', 'K1', 'K1', 'K2'],
'key2':['K0', 'K0', 'K0', 'K0'],
'A':['C0', 'C1', 'C2', 'C3'],
'B':['D0', 'D1', 'D2', 'D3']})
print(left)
print(right)
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A2 B2
3 K2 K1 A3 B3
key1 key2 A B
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C2 D2
3 K2 K0 C3 D3
res = pd.merge(left, right, on=['key1', 'key2'], how='inner') # how: left, right, outer, inner
print(res)
key1 key2 A_x B_x A_y B_y
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
df1 = pd.DataFrame({
'col1':[0,1],'col_left':['a', 'b']})
df2 = pd.DataFrame({
'col1':[1, 2, 2],'col_right':[2, 2, 2]})
print(df1)
print(df2)
col1 col_left
0 0 a
1 1 b
col1 col_right
0 1 2
1 2 2
2 2 2
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
print(res)
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_col') # 添加指示说明
print(res)
col1 col_left col_right indicator_col
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
left = pd.DataFrame({
'A':['A0', 'A1', 'A2'],
'B':['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({
'C':['C0', 'C1', 'C2'],
'D':['D0', 'D1', 'D2']},
index=['K0', 'K2', 'K3'])
print(left)
print(right)
A B
K0 A0 B0
K1 A1 B1
K2 A2 B2
C D
K0 C0 D0
K2 C1 D1
K3 C2 D2
res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
print(res)
res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C1 D1
K3 NaN NaN C2 D2
A B C D
K0 A0 B0 C0 D0
K2 A2 B2 C1 D1
boys = pd.DataFrame({
'k':['K0', 'K1', 'K2'], 'age':[1, 2, 3]})
girls = pd.DataFrame({
'k':['K0', 'K0', 'K2'], 'age':[4, 5, 6]})
print(boys)
print(girls)
k age
0 K0 1
1 K1 2
2 K2 3
k age
0 K0 4
1 K0 5
2 K2 6
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girls'], how='inner')
print(res)
k age_boy age_girls
0 K0 1 4
1 K0 1 5
2 K2 3 6
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girls'], how='outer')
print(res)
k age_boy age_girls
0 K0 1 4.0
1 K0 1 5.0
2 K1 2 NaN
3 K2 3 6.0
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data = pd.Series(np.random.randn(1000), index=np.arange(1000)) # 正态分布
data = data.cumsum() # 累加
data.plot()
plt.show()
data = pd.DataFrame(np.random.randn(1000, 4), index=np.arange(1000), columns=list("ABCD"))
print(data.head(5)) # 输出data的前5行数据
A B C D
0 -1.473072 -0.751053 0.131861 -0.693762
1 -0.947544 -0.147147 -0.556534 0.424414
2 0.388600 -1.637560 0.161108 0.756645
3 1.372510 -0.675933 -0.441797 -1.028523
4 -1.941062 1.263854 -1.704671 1.076629
data = data.cumsum()
ax = data.plot.scatter(x="A", y="B", color="DarkBlue", label="class 1")
data.plot.scatter(x="A", y="C", color="DarkGreen", label="class 2", ax = ax)
# plt: bat hist box kde area scatter hexbin pie
plt.show()