【路径规划】基于matlab改进蚁群算法的路径规划【含Matlab源码 335期】

一、简介

1 蚁群算法的提出
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。遗传算法在模式识别、神经网络、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。
2 算法的基本原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、源代码

%% 清空环境
clc;clear

%% 障碍物数据
position = load('barrier.txt');
plot([0,200],[0,200],'.');
hold on
B = load('barrier.txt');
xlabel('km','fontsize',12)
ylabel('km','fontsize',12)
title('二维规划空间','fontsize',12)
%% 描述起点和终点
S = [20,180];
T = [160,90];
plot([S(1),T(1)],[S(2),T(2)],'.');

% 图形标注
text(S(1)+2,S(2),'S');
text(T(1)+2,T(2),'T');
 
%% 描绘障碍物图形
fill(position(1:4,1),position(1:4,2),[0,0,0]);
fill(position(5:8,1),position(5:8,2),[0,0,0]);
fill(position(9:12,1),position(9:12,2),[0,0,0]);
fill(position(13:15,1),position(13:15,2),[0,0,0]);

% 下载链路端点数据
L = load('lines.txt');
 
%% 描绘线及中点
v = zeros(size(L));
for i=1:20
    plot([position(L(i,1),1),position(L(i,2),1)],[position(L(i,1),2)...
        ,position(L(i,2),2)],'color','black','LineStyle','--');
    v(i,:) = (position(L(i,1),:)+position(L(i,2),:))/2;
    plot(v(i,1),v(i,2),'*');
    text(v(i,1)+2,v(i,2),strcat('v',num2str(i)));
end
 
%% 描绘可行路径
sign = load('matrix.txt');
[n,m]=size(sign);
 
for i=1:n
    
    if i == 1
        for k=1:m-1
            if sign(i,k) == 1
                plot([S(1),v(k-1,1)],[S(2),v(k-1,2)],'color',...
                    'black','Linewidth',2,'LineStyle','-');
            end
        end
        continue;
    end
    
    for j=2:i
        if i == m
            if sign(i,j) == 1
                plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color',...
                    'black','Linewidth',2,'LineStyle','-');
            end
        else
            if sign(i,j) == 1
                plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],...
                    'color','black','Linewidth',2,'LineStyle','-');
            end
        end
    end
end
path = DijkstraPlan(position,sign);
j = path(22);
plot([T(1),v(j-1,1)],[T(2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');
i = path(22);
j = path(i);
count = 0;
while true
    plot([v(i-1,1),v(j-1,1)],[v(i-1,2),v(j-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');
    count = count + 1;
    i = j;
    j = path(i);
    if i == 1 || j==1
        break;
    end
end
plot([S(1),v(i-1,1)],[S(2),v(i-1,2)],'color','yellow','LineWidth',3,'LineStyle','-.');


count = count+3;
pathtemp(count) = 22;
j = 22;
for i=2:count
    pathtemp(count-i+1) = path(j);
    j = path(j);
end
path = pathtemp;
path = [1     9     8     7    13    14    12    22];

%% 蚁群算法参数初始化
pathCount = length(path)-2;          %经过线段数量
pheCacuPara=2;                       %信息素计算参数
pheThres = 0.8;                      %信息素选择阈值
pheUpPara=[0.1 0.0003];              %信息素更新参数
qfz= zeros(pathCount,10);            %启发值

phePara = ones(pathCount,10)*pheUpPara(2);         %信息素
qfzPara1 = ones(10,1)*0.5;           %启发信息参数
qfzPara2 = 1.1;                      %启发信息参数
m=10;                                %种群数量
NC=500;                              %循环次数
pathk = zeros(pathCount,m);          %搜索结果记录
shortestpath = zeros(1,NC);          %进化过程记录
 
%% 初始最短路径
dijpathlen = 0;
vv = zeros(22,2);
vv(1,:) = S;
vv(22,:) = T;
vv(2:21,:) = v;
for i=1:pathCount-1
dijpathlen = dijpathlen + sqrt((vv(path(i),1)-vv(path(i+1),1))^2+(vv(path(i),2)-vv(path(i+1),2))^2);
end
LL = dijpathlen;
 
%% 经过的链接线
lines = zeros(pathCount,4);
for i = 1:pathCount
    lines(i,1:2) = B(L(path(i+1)-1,1),:);
    lines(i,3:4) = B(L(path(i+1)-1,2),:);
end

三、运行结果

【路径规划】基于matlab改进蚁群算法的路径规划【含Matlab源码 335期】_第1张图片
【路径规划】基于matlab改进蚁群算法的路径规划【含Matlab源码 335期】_第2张图片

四、备注

完整代码或者代写添加QQ2449341593。
往期回顾>>>>>>
【预测模型】基于matlab粒子群的lssvm预测【含Matlab源码 103期】
【lSSVM预测】基于matlab鲸鱼优化算法之lSSVM数据预测【含Matlab源码 104期】
【lstm预测】基于matlab鲸鱼优化算法之改进的lstm预测【含Matlab源码 105期】
【SVM预测】基于matlab蝙蝠算法改进的SVM预测(一)【含Matlab源码 106期】
【SVM预测】基于matlab灰狼算法优化svm支持向量机预测【含Matlab源码 107期】
【预测模型】基于matlab BP神经网络的预测【含Matlab源码 108期】
【lssvm预测模型】基于蝙蝠算法改进的最小二乘支持向量机lssvm预测【Matlab 109期】
【lssvm预测】基于飞蛾扑火算法改进的最小二乘支持向量机lssvm预测【Matlab 110期】
【SVM预测】基于matlab蝙蝠算法之改进的SVM预测(二)【含Matlab源码 141期】
【lssvm预测】基于matlab飞蛾扑火算法之改进的最小二乘支持向量机lssvm预测【含Matlab源码 142期】
【ANN预测模型】基于matlab差分算法改进ANN网络预测【含Matlab源码 151期】
【预测模型】基于matlab RBF神经网络预测模型【含Matlab源码 177期】
【预测模型】基于matlab SVM回归预测算法来预测股票趋势【含Matlab源码 180期】
【预测模型】基于matlab BP神经网络之模型优化预测【含Matlab源码 221期】
【预测模型】基于matlab RLS算法的数据预测【含Matlab源码 222期】
【预测模型】基于matlab碳排放约束下的煤炭消费量优化预测【含Matlab源码 223期】
【路径规划】基于matlab A星和改进A星的路径规划【含Matlab源码 225期】
【TSP】基于matlab 改进的禁忌搜索算法之求解旅行商问题【含Matlab源码 241期】
【TSP】基于matlab 改进的蚁群算法之求解旅行商问题【含Matlab源码 242期】
【路径规划】基于matlab模拟退火算法之求解火灾巡逻最短路径【含Matlab源码 252期】
【三维路径规划】基于matlab 无人机三维空间的航迹规划【含Matlab源码 270期】
【路径规划】基于matlab分布式目标检测和跟踪的多无人机【含Matlab源码 289期】
【路径规划】基于matlab粒子群算法求解无人机最短路径【含Matlab源码 300期】
【无人机】多无人协同任务分配程序平台【含Matlab源码 301期】
【路径规划】基于matlab任意架次植保无人机作业路径规划【含Matlab源码 322期】
【路径规划】基于matlab粒子群遗传求解多无人机三维路径规划【含Matlab源码 333期】
【VRP问题】基于matlab粒子群求解VRPTW模型【含Matlab源码 334期】

你可能感兴趣的:(matlab,路径规划)