原文链接:http://tecdat.cn/?p=20531
在标准线性模型中,我们假设 。当线性假设无法满足时,可以考虑使用其他方法。
多项式回归
扩展可能是假设某些多项式函数,
同样,在标准线性模型方法(使用GLM的条件正态分布)中,参数 可以使用最小二乘法获得,其中 在 。
即使此多项式模型不是真正的多项式模型,也可能仍然是一个很好的近似值 。实际上,根据 Stone-Weierstrass定理,如果 在某个区间上是连续的,则有一个统一的近似值 ,通过多项式函数。
仅作说明,请考虑以下数据集
db = data.frame(x=xr,y=yr)
plot(db)
与标准回归线
reg = lm(y ~ x,data=db)
abline(reg,col="red")
考虑一些多项式回归。如果多项式函数的次数足够大,则可以获得任何一种模型,
reg=lm(y~poly(x,5),data=db)
但是,如果次数太大,那么会获得太多的“波动”,
reg=lm(y~poly(x,25),data=db)
并且估计值可能不可靠:如果我们更改一个点,则可能会发生(局部)更改
yrm=yr;yrm[31]=yr[31]-2
lines(xr,predict(regm),col="red")
局部回归
实际上,如果我们的兴趣是局部有一个很好的近似值 ,为什么不使用局部回归?
使用加权回归可以很容易地做到这一点,在最小二乘公式中,我们考虑
- 在这里,我考虑了线性模型,但是可以考虑任何多项式模型。在这种情况下,优化问题是
例如,如果我们想在某个时候进行预测 , 考虑 。使用此模型,我们可以删除太远的观测值,
更一般的想法是考虑一些核函数 给出权重函数,以及给出邻域长度的一些带宽(通常表示为h),
这实际上就是所谓的 Nadaraya-Watson 函数估计器 。
在前面的案例中,我们考虑了统一核 ,
但是使用这种权重函数具有很强的不连续性不是最好的选择,尝试高斯核,
这可以使用
w=dnorm((xr-x0))
reg=lm(y~1,data=db,weights=w)
在我们的数据集上,我们可以绘制
w=dnorm((xr-x0))
plot(db,cex=abs(w)*4)
lines(ul,vl0,col="red")
axis(3)
axis(2)
reg=lm(y~1,data=db,weights=w)
u=seq(0,10,by=.02)
v=predict(reg,newdata=data.frame(x=u))
lines(u,v,col="red",lwd=2)
在这里,我们需要在点2进行局部回归。下面的水平线是回归(点的大小与宽度成比例)。红色曲线是局部回归的演变
让我们使用动画来可视化曲线。
但是由于某些原因,我无法在Linux上轻松安装该软件包。我们可以使用循环来生成一些图形
name=paste("local-reg-",100+i,".png",sep="")
png(name,600,400)
for(i in 1:length(vx0)) graph (i)
然后,我使用
当然,可以考虑局部线性模型,
return(predict(reg,newdata=data.frame(x=x0)))}
甚至是二次(局部)回归,
lm(y~poly(x,degree=2), weights=w)
当然,我们可以更改带宽
请注意,实际上,我们必须选择权重函数(所谓的核)。但是,有(简单)方法来选择“最佳”带宽h。交叉验证的想法是考虑
是使用局部回归获得的预测。
我们可以尝试一些真实的数据。
library(XML)
data = readHTMLTable(html)
整理数据集,
plot(data$no,data$mu,ylim=c(6,10))
segments(data$no,data$mu-1.96*data$se,
我们计算标准误差,反映不确定性。
for(s in 1:8){reg=lm(mu~no,data=db,
lines((s predict(reg)[1:12]
所有季节都应该被认为是完全独立的,这不是一个很好的假设。
smooth(db$no,db$mu,kernel = "normal",band=5)
我们可以尝试查看带宽较大的曲线。
db$mu[95]=7
plot(data$no,data$mu
lines(NW,col="red")
样条平滑
接下来,讨论回归中的平滑方法。假设 , 是一些未知函数,但假定足够平滑。例如,假设 是连续的, 存在,并且是连续的, 存在并且也是连续的等等。如果 足够平滑, 可以使用泰勒展开式。 因此,对于
也可以写成
第一部分只是一个多项式。
使用 黎曼积分,观察到
因此,
我们有线性回归模型。一个自然的想法是考虑回归 ,对于
给一些节点 。
plot(db)
如果我们考虑一个节点,并扩展阶数1,
B=bs(xr,knots=c(3),Boundary.knots=c(0,10),degre=1)
lines(xr[xr<=3],predict(reg)[xr<=3],col="red")
lines(xr[xr>=3],predict(reg)[xr>=3],col="blue")
可以将用该样条获得的预测与子集(虚线)上的回归进行比较。
lines(xr[xr<=3],predict(reg)[xr<=3
lm(yr~xr,subset=xr>=3)
这是不同的,因为这里我们有三个参数(关于两个子集的回归)。当要求连续模型时,失去了一个自由度。观察到可以等效地写
lm(yr~bs(xr,knots=c(3),Boundary.knots=c(0,10)
回归中出现的函数如下
现在,如果我们对这两个分量进行回归,我们得到
matplot(xr,B
abline(v=c(0,2,5,10),lty=2)
如果加一个节点,我们得到
预测是
lines(xr,predict(reg),col="red")
我们可以选择更多的节点
lines(xr,predict(reg),col="red")
我们可以得到一个置信区间
polygon(c(xr,rev(xr)),c(P[,2],rev(P[,3]))
points(db)
如果我们保持先前选择的两个节点,但考虑泰勒的2阶的展开,我们得到
matplot(xr,B,type="l")
abline(v=c(0,2,5,10),lty=2)
如果我们考虑常数和基于样条的第一部分,我们得到
B=cbind(1,B)
lines(xr,B[,1:k]%*%coefficients(reg)[1:k],col=k-1,lty=k-1)
如果我们将常数项,第一项和第二项相加,则我们得到的部分在第一个节点之前位于左侧,
k=3
lines(xr,B[,1:k]%*%coefficients(reg)[1:k]
通过基于样条的矩阵中的三个项,我们可以得到两个节点之间的部分,
lines(xr,B[,1:k]%*%coefficients(reg)[1:k]
最后,当我们对它们求和时,这次是最后一个节点之后的右侧部分,
k=5
这是我们使用带有两个(固定)节点的二次样条回归得到的结果。可以像以前一样获得置信区间
polygon(c(xr,rev(xr)),c(P[,2],rev(P[,3]))
points(db)
lines(xr,P[,1],col="red")
使用函数 ,可以确保点的连续性 。
再一次,使用线性样条函数,可以增加连续性约束,
lm(mu~bs(no,knots=c(12*(1:7)+.5),Boundary.knots=c(0,97),
lines(c(1:94,96),predict(reg),col="red")
但是我们也可以考虑二次样条,
abline(v=12*(0:8)+.5,lty=2)
lm(mu~bs(no,knots=c(12*(1:7)+.5),Boundary.knots=c(0,97),
最受欢迎的见解
3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)
5.R语言回归中的Hosmer-Lemeshow拟合优度检验