- PCDN与边缘计算:流量处理的双赢方案
数据库
PCDN与边缘计算:流量处理的双赢方案在数字化时代,宽带流量的快速增长对传统网络架构提出了更高要求。视频、直播、云计算等应用消耗了大量带宽资源,如何高效、低成本地处理流量成为行业关注的重点。PCDN(Peer-to-PeerContentDeliveryNetwork)与边缘计算的结合,为流量优化提供了双赢解决方案。PCDN通过利用用户闲置带宽和存储资源,构建分布式网络,使内容分发更接近终端用户。
- 瑞芯微RK3288、RK3399、RK3568、RK3368芯片性能介绍与对比分析
不对法
硬件编程嵌入式硬件linux单片机mcu
目录标题RK3568RK3288RK3368RK3399RK3568是瑞芯微2020年底最新发布的一款定位中高端的通用型SoC,采用22nm工艺制程,支持Android11和Linux操作系统(Linux+qt/Fedora/Debian/Ubuntu),主要面向行业应用市场,如视频会议、智慧安防、商业显示、边缘计算、物联网网关、视频编解码等领域。集成4核arm架构A55处理器和MaliG522E
- 远程办公与协作新趋势:从远程桌面、VDI到边缘计算,打造高效、安全的混合办公环境
北极光SD-WAN组网
边缘计算安全人工智能
一、引言随着数字化转型的加速,越来越多的企业开始采用远程办公和混合办公模式,以提升员工的灵活性和企业的敏捷性。然而,异地办公也带来了诸如桌面环境不一致、安全风险增加、沟通协作效率降低等诸多挑战。因此,如何打造一致、安全且高效的远程办公环境,成为企业管理者急需破解的难题。本文将从远程桌面与虚拟桌面基础架构(VDI)、协作工具与平台集成、边缘计算在混合办公中的应用三个维度,分析如何构建一个高效、安全且
- SD-WAN在智慧工厂中的实践:云平台与边缘计算高效协作解析
北极光SD-WAN组网
边缘计算人工智能
随着工业4.0与智能制造的深入推进,智慧工厂成为现代制造业的重要发展方向。智慧工厂依托云计算与边缘计算协同处理海量数据,以实现生产过程的智能化。然而,云平台和边缘计算之间的数据传输对网络的可靠性、灵活性和实时性提出了更高要求。在此背景下,SD-WAN(软件定义广域网)技术成为解决这一问题的重要工具。本文将探讨SD-WAN技术在制造业中如何优化云平台与边缘计算的协作应用,分析其在智慧工厂场景下的具体
- 限流系列之五:TDMQ RabbitMQ Serverless 版限流机制深度解析与实践指南
腾讯云中间件
消息队列腾讯云rabbitmqserverless
导语分布式集群限流是保障云服务高可用性的核心技术手段,其意义不仅在于防止系统过载,更是构建弹性架构、优化资源效率、实现业务可持续性的关键策略。未来,随着边缘计算和Serverless的普及,限流技术将进一步与底层基础设施深度融合,成为构建下一代高可用架构的核心基石。腾讯云TDMQRabbitMQServerless版作为一款极致弹性、高性能且高可靠的消息中间件,通过提供稳定低延迟的消息服务,助力企
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 解析AI算力网络与通信领域强化学习的算法
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构人工智能网络算法ai
解析AI算力网络与通信领域强化学习的算法:从"快递员找路"到"智能网络大脑"关键词:AI算力网络、通信领域、强化学习、马尔可夫决策、资源调度摘要:本文将用"快递物流系统"的类比,带您理解AI算力网络与通信领域如何通过强化学习实现智能决策。我们会从核心概念讲起,逐步拆解强化学习在网络资源调度中的算法原理,结合Python代码实战,最后探索其在5G/6G、边缘计算等场景的应用。即使您没学过复杂数学,也
- 18、探索边缘计算与面向能力的架构
info6
边缘计算面向能力的架构COA
探索边缘计算与面向能力的架构1.边缘计算的定义与特性边缘计算是指在数据生成或消费的上下文中进行计算。这种计算方式与云计算有着本质的区别,云计算将计算资源与物理上下文解耦,以便在不同的场景中高效共享。边缘计算则紧密耦合于物理环境,旨在提供即时响应,处理现实世界的数据。边缘计算的关键特性边缘计算具有以下几个关键特性:上下文中的计算:边缘计算强调与物理世界的联系,响应物理世界的数据,通常旨在提供即时响应
- 深入解析PCDN:边缘计算与内容分发的结合
数据库
深入解析PCDN:边缘计算与内容分发的结合在当今数字化时代,互联网流量的快速增长对传统内容分发网络(CDN)提出了更高要求。为了优化宽带流量的分配、降低延迟并提升用户体验,PCDN(P2PCDN)应运而生,它结合了边缘计算与分布式内容分发技术,成为新一代网络加速方案。PCDN的核心原理PCDN的核心在于利用边缘节点的计算和存储能力,将内容分发下沉至靠近用户的终端设备。与传统的CDN依赖中心化服务器
- AI时代下的架构设计:从传统到智能化的技术演进
作者:蓝葛亮发布时间:2025年6月关键词:架构设计、AI原生、微服务、云原生、MLOps文章目录第一章:AI架构设计概述第二章:AI原生应用架构模式第三章:微服务在AI系统中的演进第四章:云原生AI架构实践第五章:MLOps与LLMOps工程化第六章:边缘计算与AI融合架构第七章:数据架构的AI化转型第八章:AI架构安全与治理第九章:性能优化与可扩展性第十章:行业案例与最佳实践第一章:AI架构设
- 万级K8s集群背后etcd稳定性及性能优化实践
「已注销」
云计算容器kubernetesetcddocker
背景与挑战随着腾讯自研上云及公有云用户的迅速增长,一方面,腾讯云容器服务TKE服务数量和核数大幅增长,另一方面我们提供的容器服务类型(TKE托管及独立集群、EKS弹性集群、edge边缘计算集群、mesh服务网格、serverlessknative)也越来越丰富。各类容器服务类型背后的核心都是K8s,K8s核心的存储etcd又统一由我们基于K8s构建的etcd平台进行管理。基于它我们目前管理了千级e
- Google Maps×亚矩阵云手机:重构跨境场景的地理服务新范式
云云321
矩阵智能手机重构自动化线性代数网络游戏
在全球化与数字化深度融合的当下,地理信息服务与云端虚拟化技术的结合正成为跨境业务的核心竞争力。GoogleMaps作为全球领先的地图服务提供商,凭借其精准定位、路径规划与场景化交互能力,已深度嵌入共享经济、跨境电商、本地化营销等领域。而亚矩阵云手机基于ARM虚拟化集群与边缘计算技术,通过动态IP绑定、虚拟定位与全球节点部署,为GoogleMaps的跨境应用提供了安全、高效、低延迟的底层支撑。本文将
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 全球首款5G-A人形机器人亮相,通信与AI融合进入新阶段
未来智慧谷
人工智能5G机器人
6月18日,在2025年GTI国际产业大会上,中国移动联合乐聚机器人及多家合作伙伴,正式发布全球首款基于5G-Advanced(5G-A)的人形具身智能机器人。该产品依托5G-A网络的广覆盖、大带宽、低时延与高可靠连接能力,在连接、算力与数据协同层面实现突破,可支持全身关节的精细协同运动与复杂灵巧操作。该发布发生在上海世界移动通信大会(MWC)首日,展会同期的机器人创新展示与低空经济应用,共同突显
- 【软考高级系统架构论文】论边缘计算及其应用
_Richard_
2025年软考系统架构师系统架构边缘计算人工智能
论文真题边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台(架构),就近提供边缘智能服务。边缘计算与云计算各有所长,云计算擅长全局性、非实时、长周期的大数据处理与分析,能够在长周期维护、业务决策支撑等领域发挥优势;边缘计算更适用局部性、实时、短周期数据的处理与分析,能更好地支撑本地业务的实时智能化决策与执行。因此边缘计算与云计算之间不是替代关系,而是互补协
- YOLO 在无人机视频流中的部署实践:从低延迟推理到边缘智能协同
YOLO在无人机视频流中的部署实践:从低延迟推理到边缘智能协同关键词:YOLOv8、无人机视频流、边缘部署、RTSP、低延迟推理、实时检测、JetsonOrin、RK3588、模型压缩摘要:随着无人机在巡检、安防、农业、物流等场景的广泛应用,如何将高效的目标检测模型部署在无人机或其边缘计算模块上,成为一项关键挑战。YOLO系列模型以其高性能、低延迟特性,已被广泛应用于实时视频流的智能感知任务。本文
- API网关Apisix介绍
九又四分之三站台Emm
架构师修养网络
ApacheAPISIX是一个高性能、可扩展、开源的API网关,主要用于处理API请求的流量管理、安全控制、负载均衡、动态路由、身份认证等。它是Apache基金会的顶级项目,以其云原生架构、动态配置、插件化机制等特点,在微服务、边缘计算、Kubernetes等场景中广泛应用。一、APISIX的核心架构APISIX主要由以下几个组件组成:组件名说明APISIXCore(DataPlane)用于处理实
- 深入剖析物联网边缘计算技术:架构、应用与挑战
Thanks_ks
IT洞察集物联网边缘计算技术架构应用场景安全隐私资源受限标准化挑战
在物联网(IoT)蓬勃发展的当下,海量设备产生的数据如潮水般涌来,对数据处理和响应速度提出了前所未有的挑战。边缘计算技术应运而生,成为物联网领域的关键支撑技术之一。它就像在物联网网络的“边缘”部署了一个个智能小助手,让数据处理更高效、响应更迅速。今天,我们就来深入了解一下物联网边缘计算技术。边缘计算技术架构剖析边缘计算架构主要由边缘设备、边缘网关和边缘服务器三个核心层次构成。边缘设备处于架构的最前
- Alpine Linux 简介
思静鱼
Linux&运维安装linux运维服务器
AlpineLinux简介AlpineLinux是一个轻量级的Linux发行版,专为安全性、简单性和资源效率而设计。它采用musllibc和BusyBox,使得其镜像非常小(通常只有几MB),非常适合容器化环境(如Docker)。1.Alpine的主要特点✅极小的体积基础镜像仅5MB左右(Ubuntu约70MB,CentOS约200MB)。适合微服务、Serverless和边缘计算等场景。✅安全性
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- 算力协同创新与能效优化重构工业场景技术生态
智能计算研究中心
其他
内容概要工业智能化转型正推动算力技术生态的体系化重构,其核心在于通过异构计算与边缘计算的协同创新,构建适应复杂工业场景的动态算力基础设施。当前工业互联网平台中,约67%的实时决策场景依赖边缘节点完成数据处理,而深度学习模型训练等计算密集型任务则需依托云端异构计算集群实现资源优化配置。这种分层计算架构不仅降低网络传输延迟,更使工业设备预测性维护系统的响应速度提升至毫秒级。工业质检领域的技术突破印证了
- 小程序与边缘计算:分布式架构设计思路
移动开发前沿
移动端开发宝典小程序边缘计算分布式ai
小程序与边缘计算:分布式架构设计思路关键词:小程序、边缘计算、分布式架构、设计思路、性能优化摘要:本文深入探讨了小程序与边缘计算相结合的分布式架构设计思路。首先介绍了小程序和边缘计算的背景知识,包括其目的、适用读者以及文档结构等。接着阐述了核心概念及其联系,通过示意图和流程图直观展示。详细讲解了核心算法原理和具体操作步骤,并用Python代码进行了说明。还介绍了相关的数学模型和公式,并举例说明。通
- Web 架构之边缘计算(Edge Computing)架构设计
文章目录思维导图正文内容一、边缘计算概述1.定义与概念2.与云计算对比3.应用场景二、架构设计核心要素1.硬件资源2.网络拓扑3.数据处理4.安全机制三、典型架构模式1.集中式架构2.分布式架构3.混合式架构四、设计实践与案例1.设计步骤2.实际案例分析五、挑战与未来趋势1.技术挑战2.未来发展趋势总结思维导图边缘计算架构设计边缘计算概述架构设计核心要素典型架构模式设计实践与案例挑战与未来趋势定义
- 云IDE:中小软件团队的未来开发利器——基于2025趋势与全球实践的洞察
随着云计算、AI和边缘计算技术的成熟,软件开发工具正加速向云端迁移。2025年的技术蓝图已逐渐清晰:全球中小软件团队正面临效率、成本与协作的严峻挑战,而云IDE(云端集成开发环境)的崛起,不仅是工具升级,更是这些团队突破生存瓶颈的必然选择。一、技术基础:云计算与AI驱动的“开发新基建”2025年,云计算成本持续下降,AI模型轻量化与边缘计算普及,为云IDE提供了坚实的技术底座。据Gartner预测
- AI巨头竞逐新纪元:Meta超级实验室、苹果本地化与谷歌边缘计算的战略博弈
平凡灵感码头
咨询学习文献资料人工智能边缘计算
当前全球AI产业正经历一场深刻变革,三大科技巨头Meta、苹果和谷歌分别以不同战略路径加速布局,重塑行业竞争格局。Meta以149亿美元天价收购ScaleAI部分股权并成立"超级智能实验室",彰显其在AI竞赛中扳回一城的决心;苹果在WWDC2025上终于展示了其AI本地化能力的实质性进展,试图以隐私优势弥补创新滞后;而谷歌则通过AIEdgeGallery等工具持续推进边缘计算战略,巩固其在移动生态
- T2080开发板--国产高性能嵌入式平台的核心载体
机载总线仿真测试
国产化网络安全
T2080开发板作为国产高性能嵌入式平台的核心载体,其基于天脉3操作系统的开发应用正逐步渗透到工业控制、网络安全、边缘计算等关键领域。这款由Phytium公司推出的开发板搭载了腾锐D2000系列处理器,采用8核FTC663架构,主频可达2.3GHz,配合天脉3实时操作系统的强实时特性,为国产化自主可控解决方案提供了新的技术路径。###硬件架构与性能优势T2080开发板的硬件设计充分体现了国产芯片的
- vitis dpu kernel编译和docker环境搭建
寒听雪落
linux
一,Vitis-AI简介1,Vitis-AI概述Vitis-AI在边缘计算设备的AI全栈部署框架中扮演了编译器端与后端的角色,接收前端DNN(DeepNeuralNetwork)框架训练后的网络参数IR(IntermediateRepresentation),并将其优化后编译并传递给后端。后端DNNDK(DeepNeuralNetworkDevelopmentKit)为Edge终端提供了驱动和AP
- 思特奇亮相2025MWC上海展,全景呈现端到端数智化服务能力
资讯分享周
人工智能
6月18日至20日,全球ICT领域最具影响力的年度盛会2025MWC上海在上海新国际博览中心盛大启幕。在这场科技盛宴中,思特奇以“数智无界共生未来”为主题,凭磅礴之势亮相N2馆·B60展区。依托300平米超大展位,思特奇将全景式呈现其领先的数智化服务体系与强大的端到端运营支撑能力,携手全球行业伙伴,共同探讨新技术、新经济、新未来的无限可能。6大价值主张,32项主题:思特奇展位深度解析思特奇本次展览
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><