HDU-4089 Activation 概率DP

  题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089

  开始方程想错T^T,题解见下面。。。

  dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。
  显然,dp[n][m]即为所求。
    j == 1 : dp[i][1] = p1*dp[i][1] + p2*dp[i][i]   + p4;
    2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
    j > k  : dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
  化简:
    j == 1 : dp[i][1] = p*dp[i][i]   + p41;
    2<=j<=k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
    j > k  : dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
  其中:
    p   = p2 / (1 - p1);
    p31 = p3 / (1 - p1);
    p41 = p4 / (1 - p1);
  现在可以循环 i = 1 -> n 递推求解dp[i],所以在求dp[i]时,dp[i-1]就相当于常数了,
  设dp[i][j]的常数项为c[j]:
    j == 1 : dp[i][1] = p*dp[i][i]   + c[1];
    2<=j<=k: dp[i][j] = p*dp[i][j-1] + c[j];
    j > k  : dp[i][j] = p*dp[i][j-1] + c[j];
  在求dp[i]时,就相当于求“i元1次方程组”:
    dp[i][1] = p*dp[i][i] + c[1];
    dp[i][2] = p*dp[i][1] + c[2];
    dp[i][3] = p*dp[i][2] + c[3];
    ...

    dp[i][i] = p*dp[i][i-1] + c[i];

 1 //STATUS:C++_AC_453MS_22988KB

 2 #include <functional>

 3 #include <algorithm>

 4 #include <iostream>

 5 //#include <ext/rope>

 6 #include <fstream>

 7 #include <sstream>

 8 #include <iomanip>

 9 #include <numeric>

10 #include <cstring>

11 #include <cassert>

12 #include <cstdio>

13 #include <string>

14 #include <vector>

15 #include <bitset>

16 #include <queue>

17 #include <stack>

18 #include <cmath>

19 #include <ctime>

20 #include <list>

21 #include <set>

22 #include <map>

23 using namespace std;

24 //#pragma comment(linker,"/STACK:102400000,102400000")

25 //using namespace __gnu_cxx;

26 //define

27 #define pii pair<int,int>

28 #define mem(a,b) memset(a,b,sizeof(a))

29 #define lson l,mid,rt<<1

30 #define rson mid+1,r,rt<<1|1

31 #define PI acos(-1.0)

32 //typedef

33 typedef __int64 LL;

34 typedef unsigned __int64 ULL;

35 //const

36 const int N=2010;

37 const int INF=0x3f3f3f3f;

38 const int MOD= 1000000007,STA=8000010;

39 const LL LNF=1LL<<55;

40 const double EPS=1e-9;

41 const double OO=1e30;

42 const int dx[4]={-1,0,1,0};

43 const int dy[4]={0,1,0,-1};

44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

45 //Daily Use ...

46 inline int sign(double x){return (x>EPS)-(x<-EPS);}

47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

50 template<class T> inline T Min(T a,T b){return a<b?a:b;}

51 template<class T> inline T Max(T a,T b){return a>b?a:b;}

52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

56 //End

57 

58 double pp[N],f[N][N],c[N];

59 int n,m,k;

60 double p1,p2,p3,p4;

61 

62 int main(){

63  //   freopen("in.txt","r",stdin);

64     int i,j;

65     double p21,p31,p41,t;

66     while(~scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4))

67     {

68         if(sign(p4)==0){

69             printf("0.00000\n");

70             continue;

71         }

72         p21=p2/(1-p1);

73         p31=p3/(1-p1);

74         p41=p4/(1-p1);

75         pp[0]=1;

76         for(i=1;i<=n;i++)

77             pp[i]=pp[i-1]*p21;

78         f[1][1]=p41/(1-p21);

79         for(i=2;i<=n;i++){

80             c[1]=p41;

81             for(j=2;j<=i && j<=k;j++)c[j]=f[i-1][j-1]*p31+p41;

82             for(;j<=i && j<=n;j++)c[j]=f[i-1][j-1]*p31;

83             t=0;

84             for(j=1;j<=i;j++)t+=pp[i-j]*c[j];

85             f[i][i]=t/(1-pp[i]);

86             f[i][1]=p21*f[i][i]+c[1];

87             for(j=2;j<i;j++)f[i][j]=p21*f[i][j-1]+c[j];

88         }

89 

90         printf("%.5lf\n",f[n][m]);

91     }

92     return 0;

93 }

 

你可能感兴趣的:(HDU)