ZOJ-3640 Help Me Escape 概率DP

  题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3640

  题意:Cain被困在一个洞穴里,洞穴有n个出口,每个出口有一个难度值C[i],Cain有一个初始的战斗值f。现在Cain随机选择一个出口,如果f大于出后的难度,那么Cain将会花floor( (1+sqrt(5))/2*C[i]*C[i] )天出去,否则Cain的f将会增加C[i]并且消耗掉一天时间,然后重新尝试。求Cain逃出洞穴天数的期望值。。。

  首先用BFS把Cain所有的f值的可能情况求出来,然后就可以列出方程,这里因为期望都是由大的f推过来,所以f直接从大到小递推消元就可以了。。

  1 //STATUS:C++_AC_730MS_1436KB

  2 #include <functional>

  3 #include <algorithm>

  4 #include <iostream>

  5 //#include <ext/rope>

  6 #include <fstream>

  7 #include <sstream>

  8 #include <iomanip>

  9 #include <numeric>

 10 #include <cstring>

 11 #include <cassert>

 12 #include <cstdio>

 13 #include <string>

 14 #include <vector>

 15 #include <bitset>

 16 #include <queue>

 17 #include <stack>

 18 #include <cmath>

 19 #include <ctime>

 20 #include <list>

 21 #include <set>

 22 #include <map>

 23 using namespace std;

 24 #pragma comment(linker,"/STACK:102400000,102400000")

 25 //using namespace __gnu_cxx;

 26 //define

 27 #define pii pair<int,int>

 28 #define mem(a,b) memset(a,b,sizeof(a))

 29 #define lson l,mid,rt<<1

 30 #define rson mid+1,r,rt<<1|1

 31 #define PI acos(-1.0)

 32 //typedef

 33 //typedef __int64 LL;

 34 //typedef unsigned __int64 ULL;

 35 //const

 36 const int N=40010;

 37 const int INF=0x3f3f3f3f;

 38 //const LL MOD=1000000007,STA=8000010;

 39 //const LL LNF=1LL<<55;

 40 const double EPS=1e-9;

 41 const double OO=1e50;

 42 const int dx[8]={-1,-1,0,1,1,1,0,-1};

 43 const int dy[8]={0,1,1,1,0,-1,-1,-1};

 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

 45 //Daily Use ...

 46 inline int sign(double x){return (x>EPS)-(x<-EPS);}

 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

 50 template<class T> inline T Min(T a,T b){return a<b?a:b;}

 51 template<class T> inline T Max(T a,T b){return a>b?a:b;}

 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

 56 //End

 57 

 58 double E[N],d[N];

 59 int w[N],id[N],c[N],vis[N];

 60 int n,f,cnt;

 61 

 62 void bfs(int s)

 63 {

 64     int i,x;

 65     queue<int> q;

 66     q.push(s);

 67     mem(vis,0);

 68     vis[s]=1;

 69     while(!q.empty()){

 70         x=q.front();q.pop();

 71         for(i=1;i<=n;i++){

 72             if(x>c[i] || vis[x+c[i]])continue;

 73             w[cnt++]=x+c[i];

 74             vis[x+c[i]]=1;

 75             q.push(x+c[i]);

 76         }

 77     }

 78 }

 79 

 80 int main(){

 81  //   freopen("in.txt","r",stdin);

 82     int i,j;

 83     double t=(1+sqrt(5.0))/2,p;

 84     while(~scanf("%d%d",&n,&f))

 85     {

 86         p=1.0/n;

 87         for(i=1;i<=n;i++){

 88             scanf("%d",&c[i]);

 89             d[i]=floor(t*c[i]*c[i]);

 90         }

 91 

 92         w[cnt=0]=f;cnt++;

 93         bfs(f);

 94         sort(w,w+cnt);

 95         for(i=0;i<cnt;i++)id[w[i]]=i;

 96         for(i=cnt-1;i>=0;i--){

 97             E[i]=0;

 98             for(j=1;j<=n;j++){

 99                 if(w[i]>c[j])E[i]+=p*d[j];

100                 else E[i]+=p*(E[id[w[i]+c[j]]]+1);

101             }

102         }

103 

104         printf("%.3lf\n",E[0]);

105     }

106     return 0;

107 }

 

你可能感兴趣的:(escape)