动手学习深度学习二

文本预处理

import collections

import re

# 读取文件

def read_time_machine():

with open('a.txt', 'r')as f:

lines = [re.sub('[^a-z]+', ' ', line.strip().lower())for linein f]

return lines

lines = read_time_machine()

print('# sentences %d' %len(lines))

# 分词

def tokenize(sentences, token='word'):

"""Split sentences into word or char tokens"""

    if token =='word':

return [sentence.split(' ')for sentencein sentences]

elif token =='char':

return [list(sentence)for sentencein sentences]

else:

print('ERROR: unkown token type '+token)

tokens = tokenize(lines)

class Vocab(object):

def __init__(self, tokens, min_freq=0, use_special_tokens=False):

counter = count_corpus(tokens)# :

        self.token_freqs =list(counter.items())

self.idx_to_token = []

if use_special_tokens:

# padding, begin of sentence, end of sentence, unknown

            self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)

self.idx_to_token += ['', '', '', '']

else:

self.unk =0

            self.idx_to_token += ['']

self.idx_to_token += [tokenfor token, freqin self.token_freqs

if freq >= min_freqand tokennot in self.idx_to_token]

self.token_to_idx =dict()

for idx, tokenin enumerate(self.idx_to_token):

self.token_to_idx[token] = idx

def __len__(self):

return len(self.idx_to_token)

def __getitem__(self, tokens):

if not isinstance(tokens, (list, tuple)):

return self.token_to_idx.get(tokens, self.unk)

return [self.__getitem__(token)for tokenin tokens]

def to_tokens(self, indices):

if not isinstance(indices, (list, tuple)):

return self.idx_to_token[indices]

return [self.idx_to_token[index]for indexin indices]

def count_corpus(sentences):

tokens = [tkfor stin sentencesfor tkin st]

return collections.Counter(tokens)# 返回一个字典,记录每个词的出现次数

vocab = Vocab(tokens,use_special_tokens=True)

print(vocab[['i','love','shuai'],['shuai',vocab.bos]])

Sequence Sample

import torch

import random

def load_data_jay_lyrics():

with open('../data/jaychou_lyrics.txt')as f:

corpus_chars = f.read()

corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')

corpus_chars = corpus_chars[0:18]

idx_to_char =list(set(corpus_chars))

char_to_idx =dict([(char, i)for i, charin enumerate(idx_to_char)])

vocab_size =len(char_to_idx)

corpus_indices = [char_to_idx[char]for charin corpus_chars]

return corpus_indices, char_to_idx, idx_to_char, vocab_size

corpus_indices, char_to_idx, idx_to_char, vocab_size = load_data_jay_lyrics()

batch_size =3

num_steps =5

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):

if deviceis None:

device = torch.device('cuda' if torch.cuda.is_available()else 'cpu')

corpus_len =len(corpus_indices) // batch_size * batch_size# 保留下来的序列的长度

    corpus_indices = corpus_indices[: corpus_len]# 仅保留前corpus_len个字符

    indices = torch.tensor(corpus_indices, device=device)

indices = indices.view(batch_size, -1)# resize成(batch_size, )

    batch_num = (indices.shape[1] -1) // num_steps

for iin range(batch_num):

i = i * num_steps

X = indices[:, i: i + num_steps]

Y = indices[:, i +1: i + num_steps +1]

yield X, Y

for x,yin data_iter_consecutive(corpus_indices,batch_size,num_steps):

print(x)

print(y)

num_examples = (len(corpus_indices) -1) // num_steps# 下取整,得到不重叠情况下的样本个数

print(num_examples)

example_indices = [i * num_stepsfor iin range(num_examples)]# 每个样本的第一个字符在corpus_indices中的下标

print(example_indices)

random.shuffle(example_indices)

print(example_indices)

def data_iter_random(corpus_indices, batch_size, num_steps, device=None):

# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符

    num_examples = (len(corpus_indices) -1) // num_steps# 下取整,得到不重叠情况下的样本个数

    example_indices = [i * num_stepsfor iin range(num_examples)]# 每个样本的第一个字符在corpus_indices中的下标

    random.shuffle(example_indices)

num_examples = num_examples // batch_size * batch_size

def _data(i):

# 返回从i开始的长为num_steps的序列

        return corpus_indices[i: i + num_steps]

if deviceis None:

device = torch.device('cuda' if torch.cuda.is_available()else 'cpu')

for iin range(0, num_examples, batch_size):

# 每次选出batch_size个随机样本

        batch_indices = example_indices[i: i + batch_size]# 当前batch的各个样本的首字符的下标

        X = [_data(j)for jin batch_indices]

Y = [_data(j +1)for jin batch_indices]

yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

x_list = []

num =0

for x,yin data_iter_random(corpus_indices,batch_size,num_steps):

num +=1

print(num)

a = [1,2,3,4,5,6,7,8,9,10,11,12]

a = torch.tensor(a)

print(a.reshape((3,-1)))

你可能感兴趣的:(动手学习深度学习二)