2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data

single cell clustering

2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data_第1张图片

Key Point

  • scRNA数据分析聚类策略选择
  • 聚类的Technical, Biological, Computational挑战
  • 聚类的生物学意义解释

写在前面的话

2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data_第2张图片
单细胞实验技术发展
单细胞组学应用
2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data_第3张图片
单细胞测序分析流程
  • 流式也是一种单细胞的技术,不同的是流式通过细胞的表面蛋白对细胞类群进行鉴定,而scRNA-seq对单个细胞的表达谱进行定量,通过Top基因的表达对细胞类群进行鉴定。
  • 为什么要聚类?基于表达谱的聚类是一种无监督的数据驱动,无偏的方法;利用聚类可以对细胞类型进行划分,对研究细胞异质性,发育,进化相关有很大的帮助
  • 很多聚类方法有潜在的假设,即数据中存在离散的cluser;但是对一些细胞发育谱系来说,可能需要考虑进化轨迹的问题,cluster之间存在时间上的关系。

文献正文

聚类策略

scRNA-seq 表达谱矩阵特点:

  • 高维(上万个基因表达)
  • 稀疏(基因的表达值为0或接近0)

聚类中距离的计算:

  • 使用所有的feature,即基因,容易落入'curse of dimensionality',使得距离倾向于更小
  • 特征选择和降维,使用一些基因组成的特征空间,比如PCA降维

可以使用Euclidean distance, cosine similarity, Pearson's similarity, Pearson's correlationSpearman's correlation。后三个计算方法考虑值之间的相对差异,使得它们对library or cell size差异更加鲁棒。

常用的聚类的方法k-means,计算复杂度随点的数目线性增加,然而①k-means通常是贪婪算法,容易陷入局部最优,需要重复多次不同初始参数条件或者像SC3上游处理,发现consensus;②bias towards identifying equal-sized clusters,导致忽略稀有细胞类型。

另外一个常用方法是层次聚类,自上而下或自下而上,但是其time and memory consuming,随着数据点的增加而呈现二次方增长。

另外一个常用的聚类方法是community-detection-based 算法,或者说是图算法。首先其建立一个k-nearest neighbours graph,其中K的选择对最终cluster的大小和数目影响很大。大多数基于图的聚类方法只返回一个最优解,而且其不用指定cluster的数目。

Name Year Method type Strengths Limitations
scanpy 4 2018 PCA + graph-based Very scalable May not be accurate for small data sets
Seurat (latest)3 2016 PCA + graph-based Very scalable May not be accurate for small data sets
PhenoGraph32 2015 PCA + graph-based Very scalable May not be accurate for small data sets
SC3 22 2017 PCA + k-means High accuracy through consensus, provides estimation of k High complexity, not scalable
SIMLR 24 2017 Data-driven dimensionality reduction + k-means Concurrent training of the distance metric improves sensitivity in noisy data sets Adjusting the distance metric to make cells fit the clusters may artificially inflate quality measures
CIDR 25 2017 PCA + hierarchical Implicitly imputes dropouts when calculating distances
GiniClust 75 2016 DBSCAN Sensitive to rare cell types Not effective for the detection of large clusters
pcaReduce 27 2016 PCA + k-means + hierarchical Provides hierarchy of solutions Very stochastic, does not provide a stable result
Tasic et al.28 2016 PCA + hierarchical Cross validation used to perform fuzzy clustering High complexity, no software package available
TSCAN 41 2016 PCA + Gaussian mixture model Combines clustering and pseudotime analysis Assumes clusters follow multivariate normal distribution
mpath 45 2016 Hierarchical Combines clustering and pseudotime analysis Uses empirically defined thresholds and a priori knowledge
BackSPIN 26 2015 Biclustering (hierarchical) Multiple rounds of feature selection improve clustering resolution Tends to over-partition the data
RaceID23, RaceID2115, RaceID3 2015 k-Means Detects rare cell types, provides estimation of k Performs poorly when there are no rare cell types
SINCERA 5 2015 Hierarchical Method is intuitively easy to understand Simple hierarchical clustering is used, may not be appropriate for very noisy data
SNN-Cliq 80 2015 Graph-based Provides estimation of k High complexity, not scalable
  1. DBSCAN, density-based spatial clustering of applications with noise; PCA, principal component analysis; scRNA-seq, single-cell RNA sequencing.

Discrete versus continuous cell grouping

大多数划分聚类的算法会忽略是否存在生物学有意义的群,如果数据中没有离散的群存在的话,这些方法可能就不是很适用。特别是细胞处于连续的状态,比如分化,这时常用one dimensional manifold('pseudotime') to order the cells.

2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data_第4张图片
comparison of clustering and pseudotime methods

Technical challenges

  • more dropouts, 可能原因:没有表达;测序深度低;建库时没有捕获到转录本
    目前有一些统计方法to impute zeros。
  • 估计technical noise,使用内源性spike-in RNA,作为阳性对照
  • batch effect, 批次效应,最好的避免方法是平衡实验设计
    还需要考虑在建库时的RNA降解的问题
    doublets (droplets containing two cells)
    一些高表达的基因比如ribosomal genes也会对聚类有影响

Biological challenges

cell-cycle, scLVM和cyclone可以处理这些问题
rare cell type鉴定,分治的策略,但是大cluster要不要继续分又是一个问题。

Computational challenges

高维
线性降维:PCA
非线性降维:tSNE和UMAP

参数的选择,比如k-means中k的选择以及基于图的算法中k阶近邻中k的选择
如何验证方法的有效性,及golden standard dataset的建立

  1. tissues that are very well studied and understood 或者 considering cells taken from the earliest stages of embryonic development
  2. many of the suitable data sets are quite small, making it difficult to test methods at the kinds of scale that are relevant for current experiments
    可以借助实验的方法,spatial methods,比如FISH,RNAscope等作为验证。

生物学解释和注释

如何对划分的类打标签,这是个很难的问题。与流式基于细胞表面的蛋白类似,scRNA-seq将cluster中高表达的基因作为marker基因,通过查文献,数据库等方式对cluster进行打标签。
或者借助GO富集分析,这里急需一个Cell Ontology的DataBase

新的scRNA-seq数据如何以往数据进行整合,这里需要考虑batch effect的问题。
整合的是可以①先对表达矩阵进行merge再进行聚类分析;②或者类似进行blast的功能,给一个cell的表达矩阵,找到它最近的邻居。

其实除了RNA水平,还有其它水平的数据,即多组学数据,可以更好的帮助我们进行cell type identification。还有实验水平的空间染色方法,可以帮助我们验证分群的好坏。

你可能感兴趣的:(2019-04-03 文献阅读 Challenges in unsupervised clustering of single- cell RNA- seq data)