- cv君独家视角 | AI内幕系列七:EfficientViT模型:基于多尺度线性注意力模块,实现高效的高分辨率密集预测
cv君
cv君独家视角AI内幕系列原创项目级实战项目深度学习与计算机视觉精品1024程序员节EfficientViT高分辨率密集预测任务高分辨率视觉模型Transformer人工智能计算机视觉
专题概况cv君独家视角|AI内幕系列是一个专注于人工智能领域的深度专题,旨在为读者揭开AI所有领域技术的神秘面纱,展示其背后的科学原理和实际应用。通过一系列精心策划的文章,我们将带您深入了解AI的各个领域,从计算机视觉到文本语音等多模态领域,从基础理论到前沿技术,从行业应用到未来趋势。无论您是AI领域的工程师或者专家,还是对这一领域充满好奇的读者,这个系列都将为您提供高价值的见解和启发,为您带来横
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- OpenCV图像基础
天行者@
opencv人工智能计算机视觉
OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库OpenCV最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持OpenCV可用于开发实时的图
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- Python与人工智能:为何它们是天作之合?
纪至训至
python人工智能开发语言
引言在人工智能(AI)飞速发展的今天,Python已成为这一领域的“明星语言”。从机器学习到深度学习,从自然语言处理到计算机视觉,Python的身影无处不在。那么,Python究竟为何能成为AI开发的首选工具?本文将探讨Python与AI之间的深度关联,并解析其背后的原因。1.Python的简洁性与可读性AI开发的核心在于快速迭代和实验,而Python以其简洁的语法和直观的代码结构著称。开发者无需
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- AI基于深度学习的代码搜索案例(一)
人工智能MOS
人工智能深度学习机器学习
1.背景近年来,人工智能逐渐进入各个领域并展现出了强大的能力。在计算机视觉领域,以ImageNet为例,计算机的图像分类水平已经超过了人类。在自然语言处理(NLP)领域,BERT、XLNet以及MASS也一遍遍的刷新着任务榜单。当人工智能进入游戏领域,也取得了惊人的成绩,在Atari系列游戏中,计算机很容易超过了大部分人类,在围棋比赛中,AlphaGo和AlphaZero也已经超越了人类顶尖棋手。
- Anaconda与VS Code
wei099
最近在学习机器学习和计算机视觉,使用GoogleColab来运行网上的示例代码。考虑到网页上写代码效率太低,没有代码补全功能,没有函数提示,不利于对代码的了解,于是还是决定折腾一下在自己的Windows本上安装工作环境。想要学习机器学习的技能,不可避免要具备熟练使用Python编程的能力。Anaconda是Python软件包管理器,可以大大减少使用者安装各种包的麻烦,提高工作效率。我先后安装了An
- 使用Python进行火焰检测与识别:从基础理论到高级实现的全面指南
快撑死的鱼
python算法解析python开发语言
使用Python进行火焰检测与识别:从基础理论到高级实现的全面指南火灾是一种常见而危险的自然灾害,在工业、家庭和公共场所中,实时检测火焰并做出响应是保障安全的重要手段。随着计算机视觉技术的发展,使用图像处理和机器学习的方法进行火焰检测已经成为可能。Python作为一种功能强大且广泛使用的编程语言,提供了丰富的库和工具,能够有效地实现火焰检测和识别。在本文中,我们将深入探讨如何使用Python进行火
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- 计算机视觉算法实战——车道线检测
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨车道线检测是计算机视觉领域的一个重要研究方向,尤其在自动驾驶和高级驾驶辅助系统(ADAS)中具有广泛应用。本文将深入探讨当前主流的车道线检测算法,选择性能最好的算法进行详细介绍,并涵盖数据集、代码实现、优秀论文、具体应用以及未来的研究方向和改进方向。1.当前相关的算法✨✨车道线检测算法
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- 图像去雾常见数据集
梦姐的编程日志
图像处理深度学习人工智能
近年来,随着深度学习技术的快速发展,图像去雾任务成为计算机视觉领域的重要研究方向之一。高质量的数据集是算法研究的基础,本文将介绍一些常用的图像去雾数据集,包括其特点、应用场景以及下载地址。1.RESIDE数据集RESIDE(REalisticSingleImageDEhazing)数据集是目前最常用的图像去雾数据集之一。该数据集提供了多种规模的子数据集,主要分为以下几部分:IndoorTraini
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 探索水下视觉新境界:基于Retinex理论的水下图像增强项目
葛冉忱Edith
探索水下视觉新境界:基于Retinex理论的水下图像增强项目【下载地址】基于ace-urcp-retinex的水下图像增强代码本资源文件提供了一个基于Retinex理论的水下图像增强方法的代码实现。该方法旨在消除水下图像捕捉过程中产生的色彩失真和光线散射问题,从而显著提高水下图像的可视性。Retinex理论是一种模拟人类视觉系统处理图像的计算机视觉概念。它认为,人类视觉系统通过分离物体表面反射的光
- 【AIGC】计算机视觉-YOLO系列家族
LeeZhao@
计算机视觉AIGC计算机视觉YOLO
YOLO系列家族(1)YOLO发展史(2)YOLOX(3)YOLOv6(4)YOLOv7(5)YOLOv8(6)YOLOv9(7)YOLOv10(8)YOLOv11(9)YOLOv12(1)YOLO发展史YOLO(YouOnlyLookOnce)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(JosephRedmon)和阿里-法哈迪(AliFarhadi)开发。YOLO于2015
- 整理:4篇论文介绍实时语义分割的未来,Transformer架构下的性能与效率平衡
mslion
transformer深度学习人工智能语义分割
在Transformer架构推动下,计算机视觉领域致力于打造一个极为强大且通用的大规模模型,它能处理物体检测、图像分割等多种任务。不少基于Transformer架构的研究成果显著,其通用模型在特定应用中表现出色,在图像和视频分割方面,通用设计的研究成果也超越了以往定制模型。其中,分割一切模型(SAM)在交互式分割中表现突出,能统一应对点、边界框、掩码和文本输入等交互方式。然而,多数此类研究存在弊端
- 计算机视觉算法实战——茶园害虫识别(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言茶园害虫识别是农业领域中的一个重要研究方向,旨在通过计算机视觉技术自动识别茶园中的害虫种类,从而帮助农民及时采取防治措施,减少经济损失。随着深度学习技术的快速发展,茶园害虫识别的准确性和效率得到了显著提升,为智慧农业提供了强有力的技术支持。2.当前相关算法在茶园害虫识别领域,常
- 计算机视觉算法实战——图像配准(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介图像配准(ImageRegistration)是计算机视觉中的一个重要研究方向,旨在将两幅或多幅图像在空间上对齐。这些图像可能来自不同的传感器、不同的时间或不同的视角。图像配准在医学影像、遥感、自动驾驶、机器人导航等领域有着广泛的应用。其核心目标是通过几何变换(如平移、旋转
- YOLOv5改进:在C3块不同位置添加EMA注意力机制,有效提升计算机视觉性能
UksApps
YOLO计算机视觉深度学习
计算机视觉中的目标检测是一个重要的任务,而YOLOv5是目前广泛应用的一种高效目标检测算法。为了进一步提升YOLOv5的性能,我们在C3块的不同位置添加了EMA(ExponentialMovingAverage)注意力机制。EMA注意力机制是一种用于提升模型的感知能力和特征表达能力的技术。在YOLOv5中,我们将EMA注意力机制嵌入到C3块中,以增强这一块的特征表示能力。下面是我们改进的YOLOv
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- Python----计算机视觉处理(opencv:像素,RGB颜色,图像的存储,opencv安装,代码展示)
蹦蹦跳跳真可爱589
Pythonopencv图像处理计算机视觉pythonopencv人工智能
一、计算机眼中的图像像素像素是图像的基本单元,每个像素存储着图像的颜色、亮度和其他特征。一系列像素组合到一起就形成了完整的图像,在计算机中,图像以像素的形式存在并采用二进制格式进行存储。根据图像的颜色不同,每个像素可以用不同的二进制数表示。日常生活中常见的图像是RGB三原色图。RGB图上的每个点都是由红(R)、绿(G)、蓝(B)三个颜色按照一定比例混合而成的,几乎所有颜色都可以通过这三种颜色按照不
- 【Python+OpenCV实战】手把手教你打造自定义视频播放器
m0_54877156
计算机视觉pythonopencv
随着计算机视觉技术的发展,Python作为其主要开发语言,搭配强大的OpenCV库,为我们提供了无比丰富的功能和可能性。今天,我们将一起踏入这个奇妙的世界,通过Python和cv2来实现一款自定义的视频播放器,让你在理解基础原理的同时,也能亲手打造出属于自己的酷炫工具。首先我们需要确保安装了必要的库pipinstallopencv-python安装完毕之后我们就可以正式开始了。1.导入OpenCV
- Transformer 的原理是什么?
玩人工智能的辣条哥
人工智能transformer深度学习人工智能
环境:Transformer问题描述:Transformer的原理是什么?通俗易懂一点。解决方案:Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,最初由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它在自然语言处理(NLP)领域取得了巨大成功,并逐渐扩展到计算机视觉(CV)和其他领域。Transforme
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- 计算机视觉图像处理面试笔试题整理——边缘检测
fpga和matlab
图像处理计算机视觉图像面试笔试计算机视觉面试笔试
目录1.边缘检测综述2.Roberts算子3.Prewitt算子4.Sobel算子5.Laplace算子6.Canny1.边缘检测综述边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。图像边缘是图像最基本的特征,所谓**边缘**(Edge)是指图像局部特性的不连续性。灰度或结构等信息的突变处
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23