前言
前面我们提及ggplot
在R
和Python
中都是数据可视化的利器,在机器学习和数据分析领域得到了广泛的应用。pyecharts
结合了Python
和百度开源的Echarts
工具,基于其交互性和便利性得到了众多开发者的认可。拥有如下的特点:
- 可集成至
Flask
、Django
等主流web
框架 - 相较于
matplotlib
等传统绘图库,pyecharts
语法更加简洁,更加注重数据的呈现方式而非图形细节 - 包含原生的百度地图,方便绘制地理可视化图形
本文主要整理自pyecharts
官网github
文档: https://github.com/pyecharts/...
安装
# pip安装
$ pip(3) install pyecharts
# 源码安装
$ git clone https://github.com/pyecharts/pyecharts.git
$ cd pyecharts
$ pip install -r requirements.txt
$ python setup.py install
# 或者执行 python install.py
简单的实例
首先绘制第一个图表:
from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()
# pyechart所有方法均支持链式调用, 因此上面的代码也可以改写成如下形式
from pyecharts.charts import Bar
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render()
# 使用options配置项添加主标题和副标题
from pyecharts.charts import Bar
from pyecharts import options as opts
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
bar.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
bar.render()
基本图表
1. 柱状图
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
list2 = [
{"value": 12, "percent": 12 / (12 + 3)},
{"value": 23, "percent": 23 / (23 + 21)},
{"value": 33, "percent": 33 / (33 + 5)},
{"value": 3, "percent": 3 / (3 + 52)},
{"value": 33, "percent": 33 / (33 + 43)},
]
list3 = [
{"value": 3, "percent": 3 / (12 + 3)},
{"value": 21, "percent": 21 / (23 + 21)},
{"value": 5, "percent": 5 / (33 + 5)},
{"value": 52, "percent": 52 / (3 + 52)},
{"value": 43, "percent": 43 / (33 + 43)},
]
c = (
# 设置主题: 默认是黑红风格, 其他风格大部分还不如黑红风格好看
Bar(init_opts=opts.InitOpts())
# 新增x轴数据, 这里有五列柱状图
.add_xaxis(
[
"名字很长的X轴标签1",
"名字很长的X轴标签2",
"名字很长的X轴标签3",
"名字很长的X轴标签4",
"名字很长的X轴标签5",
]
)
# 参数一: 系列名称; 参数二: 系列数据; stack: 数据堆叠; category_gap: 柱间距离
.add_yaxis("product1", list2, stack="stack1", category_gap="50%")
.add_yaxis("product2", list3, stack="stack1", category_gap="50%")
# set_series_opts系列配置项,可配置图元样式、文字样式、标签样式、点线样式等; 其中opts.LabelOpts指标签配置项
.set_series_opts(
label_opts=opts.LabelOpts(
position="right", # 数据标签的位置
formatter=JsCode( # 标签内容的格式器, 这里展示了百分比
"function(x){return Number(x.data.percent * 100).toFixed() + '%';}"
),
)
)
# set_global_opts全局配置项
.set_global_opts(
# 旋转坐标轴: 解决坐标轴名字过长的问题
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
title_opts=opts.TitleOpts(title="Bar-柱状图展示", subtitle="Bar-副标题"),
)
.render("stack_bar_percent.html")
)
2. 特效散点图
from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
from pyecharts.globals import SymbolType
c = (
# 特效散点图
EffectScatter()
# Faker返回假数据
.add_xaxis(Faker.choose())
# symbol=SymbolType.ARROW修改特效类型: 这里指箭头特效
.add_yaxis("", Faker.values(), symbol=SymbolType.ARROW)
.set_global_opts(
title_opts=opts.TitleOpts(title="EffectScatter-显示分割线"),
# 显示横纵轴分割线
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
)
.render("effectscatter_splitline.html")
)
3. 漏斗图
研发岗涉及业务分析时经常需要绘制漏斗图,用
pyecharts
可以一键生成
data = [[x_data[i], y_data[i]] for i in range(len(x_data))]
(
# InitOpts初始化配置项: 配置画布长宽
Funnel(init_opts=opts.InitOpts(width="800px", height="500px"))
.add(
series_name="网页访问数据",
data_pair=data,
# gap: 数据图形间距, 默认0
gap=2,
# tooltip_opts: 鼠标提示框组件配置项, a: series_name, b: x_data, c: y_data
tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a}
{b} : {c}%"),
# label_opts: 标签配置项, inside指标签在图层内部
label_opts=opts.LabelOpts(is_show=True, position="inside"),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(border_color="#fff", border_width=1),
)
.set_global_opts(title_opts=opts.TitleOpts(title="漏斗图", subtitle="纯属虚构"))
.render("funnel_chart.html")
)
4. 关系图
from pyecharts import options as opts
from pyecharts.charts import Graph
# 构造数据: nodes表示节点信息和对应的节点大小; links表示节点之间的关系
nodes = [
{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 20},
{"name": "结点3", "symbolSize": 30},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 50},
{"name": "结点6", "symbolSize": 40},
{"name": "结点7", "symbolSize": 30},
{"name": "结点8", "symbolSize": 20},
]
links = []
# fake节点之间的两两双向关系
for i in nodes:
for j in nodes:
links.append({"source": i.get("name"), "target": j.get("name")})
c = (
Graph()
# repulsion: 节点之间的斥力因子, 值越大表示节点之间的斥力越大
.add("", nodes, links, repulsion=8000)
.set_global_opts(title_opts=opts.TitleOpts(title="Graph-基本示例"))
.render("graph_base.html")
)
5. 组合组件Grid
最常用的是组合直方图和折点图。
from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line
from pyecharts.faker import Faker
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Grid-Bar"))
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="Grid-Line", pos_top="48%"),
legend_opts=opts.LegendOpts(pos_top="48%"),
)
)
grid = (
Grid()
# GridOpts: 直角坐标系网格配置项
# pos_bottom: grid组件离容器底部的距离
# pos_top: grid组件离容器顶部的距离
.add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
.add(line, grid_opts=opts.GridOpts(pos_top="60%"))
.render("grid_vertical.html")
)
6. 折线图
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
Line()
# Faker: 获取伪造数据集
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
.render("line_base.html")
)
7. 地图
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (
Map()
# Faker: 伪造数据集, 包括国家和对应的value
.add("商家A", [list(z) for z in zip(Faker.country, Faker.values())], "world")
# 显示label
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Map-世界地图"),
# VisualMapOpts: 视觉映射配置项, 指定组件的最大值
visualmap_opts=opts.VisualMapOpts(max_=200),
)
.render("map_world.html")
)
8. 层叠组件
from pyecharts import options as opts
from pyecharts.charts import Bar, Line
from pyecharts.faker import Faker
v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
v3 = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]
bar = (
Bar()
.add_xaxis(Faker.months)
.add_yaxis("蒸发量", v1)
.add_yaxis("降水量", v2)
.extend_axis(
# 新增y坐标轴配置项: 因为有三个纵轴数据, 包括蒸发量/降水量(单位是ml), 平均温度(单位是°C)
yaxis=opts.AxisOpts(
axislabel_opts=opts.LabelOpts(formatter="{value} °C"), interval=5
)
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Overlap-bar+line"),
# 设置y坐标轴配置项
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} ml")),
)
)
# 新增折线图
line = Line().add_xaxis(Faker.months).add_yaxis("平均温度", v3, yaxis_index=1)
# 使用层叠组件组合图形
bar.overlap(line)
bar.render("overlap_bar_line.html")
9. 饼状图
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
c = (
Pie()
.add(
"",
# 设置数据集
[list(z) for z in zip(Faker.choose(), Faker.values())],
radius=["40%", "55%"],
# 设置标签配置项
label_opts=opts.LabelOpts(
# 标签位置
position="outside",
# 标签内容格式器: {a}(系列名称),{b}(数据项名称),{c}(数值), {d}(百分比)
formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ",
# 文字块背景色
background_color="#eee",
# 文字块边框颜色
border_color="#aaa",
border_width=1,
border_radius=4,
# 在 rich 里面,可以自定义富文本样式。利用富文本样式,可以在标签中做出非常丰富的效果
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-富文本示例"))
.render("pie_rich_label.html")
)
10. 雷达图
import pyecharts.options as opts
from pyecharts.charts import Radar
"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://echarts.baidu.com/examples/editor.html?c=radar
目前无法实现的功能:
1、雷达图周围的图例的 textStyle 暂时无法设置背景颜色
"""
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
(
Radar(init_opts=opts.InitOpts(width="1280px", height="720px", bg_color="#CCCCCC"))
.add_schema(
schema=[
opts.RadarIndicatorItem(name="销售(sales)", max_=6500),
opts.RadarIndicatorItem(name="管理(Administration)", max_=16000),
opts.RadarIndicatorItem(name="信息技术(Information Technology)", max_=30000),
opts.RadarIndicatorItem(name="客服(Customer Support)", max_=38000),
opts.RadarIndicatorItem(name="研发(Development)", max_=52000),
opts.RadarIndicatorItem(name="市场(Marketing)", max_=25000),
],
splitarea_opt=opts.SplitAreaOpts(
is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
),
textstyle_opts=opts.TextStyleOpts(color="#fff"),
)
.add(
series_name="预算分配(Allocated Budget)",
data=v1,
linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
)
.add(
series_name="实际开销(Actual Spending)",
data=v2,
linestyle_opts=opts.LineStyleOpts(color="#5CACEE"),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="基础雷达图"), legend_opts=opts.LegendOpts()
)
.render("basic_radar_chart.html")
)
11. 普通散点图
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter-显示分割线"),
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
)
.render("scatter_splitline.html")
)
其他图形
其他的图形示例可以在官方文档中查询:http://gallery.pyecharts.org/。
其他文章
1. 机器学习必知必会与算法原理
机器学习导论:什么是机器学习
机器学习必知必会:凸优化
深入浅出机器学习算法:XGBoost
机器学习必知必会:梯度下降法
2. 数据分析和爬虫案例
Python数据分析:谁是2018当之无愧的“第一”国产电影
如何用python爬虫实现简单PV刷量——以CSDN为例
python脚本从零到一构建自己的免费代理IP池
[[R]数据可视化的最佳解决方案:ggplot](https://zhuanlan.zhihu.com/p/...
3. 相关经验
秋招面试:零基础拿到腾讯数据岗offer需要做哪些努力
股票市场中如何用数据思维跑赢九成的投资者
精算师证有多难考,怎么准备?
Reference
[1] http://pyecharts.org/#/zh-cn/...
[2] http://pyecharts.herokuapp.co...
[3] http://gallery.pyecharts.org/