Mysql索引

Mysql索引篇

最近在很多网站上看了索引的相关知识,各种说法的都有,但是又不是很全,有的概念很模糊,下面是由小编整理的Mysql索引知识点。

一.首先我们说下什么是索引,为什么要用索引

索引用于快速找出在某个列中有一特定值的行,不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多,如果表中查询的列有一个索引,MySQL能够快速到达一个位置去搜索数据文件,而不必查看所有数据,那么将会节省很大一部分时间。

二. 索引类型分为两类:

1.hash索引

2.bTree

三.下面我们简单分析一下bTree索引。

1. 哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

2. 说到bTree,就不得不提二叉树,二叉树分为很多,例:二叉查找树,平衡二叉树等。当然还有重点红黑树
1) 二叉查找树的特点是: 父节点左子树所有节点的值小于父节点的值。右子树所有节点的值大于父节点的值。 下面以一张图为例来体现二叉查找树。

ID name
5 张五
6 张六
7 张七
2 张二
1 张一
4 张四
3 张三

Mysql索引_第1张图片有一个需求,查找张三,如果不使用二叉查找树那么我们需要查找7次,使用二叉查找树我们只需要查找4次就可以找到我们想要的值。
根据上面说的使用二叉查找树的确可以减少查询次数,但是大家有没有想过,如果数据库的数据是 1,2,3,4,5,6,7这样依次递增的数据呢,继续使用二叉查找树就会变成一个链表了。那这样如果我们想要查找12那么需要查找7次,扫描表也是需要7次。这样跟没有建立索引没有区别,这也是弊端之一。下图为例说明。
Mysql索引_第2张图片
2) 平衡二叉树:又被称为AVL树,它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,AVL树是最早发明的自平衡二叉查找树。在AVL树中,任何节点的两个子树的高度最大差别只能为1,所以它又被称为高度平衡树。查询、增加和删除在平均和最坏情况下都是O(log n)。增加和删除会需要通过一次或多次树旋转来重新平衡这个树。
我们引入二叉树的目的是为了提高二叉树的搜索的效率,从而减少树的平均搜索长度,为此,就必须在每颗二叉树插入一个结点时调整树的结构,让二叉树搜索能够保持平衡,从而可能降低树的高度,减少的平均树的搜索长度。
平衡二叉树特点如下:
1.它的左子树和右子树都是AVL树
2.左子树和右子树的高度差不能超过1

例图:
Mysql索引_第3张图片3) 红黑树:可以理解为红黑树是凌驾于平衡二叉树之上的一棵树,红黑树不会追求“完全平衡 ”,它只会求部分达到平衡要求,降低了对旋转的要求,从而提高性能。此外,由于它的设计,所有不平衡都能够在三次旋转之内解决。在红黑树中,它的算法时间复杂度与AVL相同,并且统计性能会逼AVL树更高。所以红黑树相对于平衡二叉树来说,不是严格意义上的平衡二叉树,红黑树插入和删除效率更高一些,查询的效率比平衡二叉树来说相对低一些,但是二者查询效率差值做对比,基本可以忽略不计。红黑树特点如下:
1. 节点是红色或黑色。
2. 根节点是黑色。
3. 每个红色节点的两个子节点都是黑色。(红色节点的子节点必须是黑色节点)
4. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
故红黑树是黑色平衡的树,左子树与右子树高度差不会超过2。红节点的父节点、子节点只能是黑节点。
例图:
Mysql索引_第4张图片
4) BTree(B树):当然上面说到了红黑树,性能非常高。以上图为例,树的高度最高才为4,共9条数据,但是对于Mysql数据库,动则几百万条数据,几千万条数据,那树的高度就不可估量了,比如说上百万条数据需要经过30-50次磁盘IO才能查询到数据,甚至更多的次数,显然不能满足Mysql索引高效的查询效率。那如果我们控制树的高度呢,那这样就会极大减少了请求磁盘IO的请求次数,如果高度控制在4,那只需要经过4次磁盘IO就可以查询到数据。
但是怎么样控制树的高度呢,红黑树是每个节点只存储一个元素,如果每个节点存多个元素呢,这样就可以解决高度问题了,肯定有同学有疑问,把所有的元素都放到一个节点上,那高度值就是1了,不是更快吗?这样想肯定是错的,Mysql每一次跟磁盘IO打交道是有大小限制的,Mysql限制每一个节点的大小是16K。 想查看自己Mysql限制节点大小的同学可以执行下面的sql。
show global status like ‘Innodb_page_size’
下面以图为例体现BTree
Mysql索引_第5张图片BTree特点如下:
1.所有索引元素不重复
2.节点的数据索引从左到右依次递增
3.叶节点具有相同的深度,叶节点的指针为空
4.叶子节点和非叶子结点都存储索引和数据

5) B+树:上面说到了BTree控制了树的高度的问题,可以满足Mysql对于索引的需求,但是最终Mysq索引实现不是BTree而是B+树,Mysql对B树做了一点点改造,得到了B+树,也可以理解为B+树是B树的升级版。
下面以图为例说明:
Mysql索引_第6张图片
从这张图可以看到,我们的非叶子节点只存储了索引并没有存储data,而且叶子节点间用指针相连。B树的叶子节点和非叶子节点都存储了索引和数据,而且叶子结点的指针为空,B+树把数据放在了叶子节点上,这样非叶子节点就可以存放更多的索引,每次从磁盘IO也能获取更多的索引。
B+树特点如下:
1.非叶子节点不存储data,只存储索引(冗余)和下层指针,可以放更多的索引
2.叶子节点包含所有索引字段,和数据
3.叶子节点用双指针连接,提高区间访问的性能

四.索引分类

1.按照索引的存储关联分类:分为两大类
1.)聚集索义(聚簇索引):叶节点包含了完整的数据记录,不需要回表。
2.)非聚集索引:需要回表,二次查树,影响性能。

1.1) 大家都知道Mysql常用的存储引擎有两种MyISAM和InnoDB,但是大家实际了解过两种存储引擎底层的数据存储结构吗?
下面以图为例为大家说明:
Mysql索引_第7张图片其中test.myisam表是MyISAM存储引擎,actor表是InnoDB存储引擎,可以看到MyISAM存储引擎有三个文件,分别是frm、MYD、MYI,很容易理解frm-frame的简称,存的是表的结构,MYD-MYData存的是数据,MYI-MYIndex存的是索引,索引和数据是分开存储的,再看InnoDB只有frm、IBD,其中frm一样也是存的表的结构,IBD文件存的是索引和数据,这点InnoDB和MyISAM不一样。
下面以图为例说明MyISAM存储引擎主键索引是需要回表操作(非聚集索引
Mysql索引_第8张图片其中15存的是主键索引,0x07存的是15所在行记录的磁盘文件地址指针,比如我们想找到15的数据,那首先应该先通过主键索引树,找到15所对应的指针,然后找到了这个指针再去MyD文件中找具体的数据,需要进行二次查找,这个过程称为回表操作。
2.1) 下面以图为例说明InnoDB存储引擎主键索引不需要进行回表操作。(聚集索引
Mysql索引_第9张图片InnoDB存储引擎子节点首先15那一行存放的是索引,15下面的那一列存放的是索引所在行的其他所有字段,如果我们想要查15的数据,直接就可以找到,不需要在经过二次查树。

2. 按照功能分类:主要分为五大类
2.1 主键索引:InnoDB主键索引不需要回表操作
2.2 普通索引(二级索引):InnoDB普通索引需要回表操作,对于二级索引,会默认和主键做联合索引。
2.3 唯一索引
2.4 全文索引
2.5 联合索引:需要满足最左前缀原则

2.6 在2.2中提到了普通索引需要回表操作,那有没有不需要回表的普通索引呢,答案是有的,在某个查询里面,索引已经覆盖了我们的查询需求,我们称为覆盖索引。这时是不需要回表操作的。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。每一个索引在 InnoDB 里面对应一棵 B+ 树。

你可能感兴趣的:(索引,mysql,索引)