Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE实现

一、实现原理和步骤

1、使用movielens数据集(943个用户,1682部电影,80000条评分数据);

2、输入用户id(1-943);

3、创建用户-电影评分矩阵;

4、canopy聚类算法根据用户评分对用户聚类;

5、将canopy聚类结果作为kmeans聚类初始点,进行kmeans聚类;

6、根据聚类结果进行协同过滤推荐;

7、计算推荐算法测评指标mae值。

二、实现代码

1、项目目录

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第1张图片

2、项目运行主方法

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第2张图片
Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第3张图片

3、常量数据

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第4张图片

4、构建用户-项目评分矩阵

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第5张图片

5、Canopy聚类算法

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第6张图片

6、Kmeans聚类算法

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第7张图片

7、协同过滤推荐算法

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第8张图片

8、协同过滤推荐算法测评MAE值

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第9张图片

三、运行结果

1、输入目标用户ID和构建用户-项目评分矩阵

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第10张图片

2、Canopy聚类算法部分结果

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第11张图片

3、Kmeans聚类算法运算过程

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第12张图片

4、Kmeans聚类算法部分结果

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第13张图片

5、相似度、最近邻等结果

Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第14张图片

6、推荐结果和测评指标MAE


Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现_第15张图片

你可能感兴趣的:(Movielens数据集+Canopy聚类+Kmeans聚类+协同过滤推荐+测评指标MAE 基于用户的协同过滤推荐算法 聚类算法 代码实现 程序实现)