oj代码runtime error_k8s自定义controller三部曲之三:编写controller代码

欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:原创文章分类汇总及配套源码,涉及Java、Docker、K8S、Devops等

本文是《k8s自定义controller三部曲》的终篇,前面的章节中,我们创建了CRD,再通过自动生成代码的工具将controller所需的informer、client等依赖全部准备好,到了本章,就该编写controller的代码了,也就是说,现在已经能监听到Student对象的增删改等事件,接下来就是根据这些事件来做不同的事情,满足个性化的业务需求;

三部曲前文链接

  1. 《k8s自定义controller三部曲之一:创建CRD(Custom Resource Definition)》;
  2. 《k8s自定义controller三部曲之二:自动生成代码》;

源码下载

接下来详细讲述应用的编码过程,如果您不想自己写代码,也可以在GitHub下载完整的应用源码,地址和链接信息如下表所示:

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) [email protected]:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章源码在k8s_customize_controller这个文件夹下,如下图红框所示:oj代码runtime error_k8s自定义controller三部曲之三:编写controller代码_第1张图片

开始实战

  1. 回顾一下,上一章通过自动代码生成工具生成代码后,源码目录的内容如下:
[root@golang k8s_customize_controller]# tree.└── pkg    ├── apis    │   └── bolingcavalry    │       ├── register.go    │       └── v1    │           ├── doc.go    │           ├── register.go    │           ├── types.go    │           └── zz_generated.deepcopy.go    └── client        ├── clientset        │   └── versioned        │       ├── clientset.go        │       ├── doc.go        │       ├── fake        │       │   ├── clientset_generated.go        │       │   ├── doc.go        │       │   └── register.go        │       ├── scheme        │       │   ├── doc.go        │       │   └── register.go        │       └── typed        │           └── bolingcavalry        │               └── v1        │                   ├── bolingcavalry_client.go        │                   ├── doc.go        │                   ├── fake        │                   │   ├── doc.go        │                   │   ├── fake_bolingcavalry_client.go        │                   │   └── fake_student.go        │                   ├── generated_expansion.go        │                   └── student.go        ├── informers        │   └── externalversions        │       ├── bolingcavalry        │       │   ├── interface.go        │       │   └── v1        │       │       ├── interface.go        │       │       └── student.go        │       ├── factory.go        │       ├── generic.go        │       └── internalinterfaces        │           └── factory_interfaces.go        └── listers            └── bolingcavalry                └── v1                    ├── expansion_generated.go                    └── student.go21 directories, 27 files
  1. 本章要编写的第一个go文件就是controller.go,在k8s_customize_controller目录下创建controller.go,代码内容如下:
package mainimport (	"fmt"	"time"	"github.com/golang/glog"	corev1 "k8s.io/api/core/v1"	"k8s.io/apimachinery/pkg/api/errors"	"k8s.io/apimachinery/pkg/util/runtime"	utilruntime "k8s.io/apimachinery/pkg/util/runtime"	"k8s.io/apimachinery/pkg/util/wait"	"k8s.io/client-go/kubernetes"	"k8s.io/client-go/kubernetes/scheme"	typedcorev1 "k8s.io/client-go/kubernetes/typed/core/v1"	"k8s.io/client-go/tools/cache"	"k8s.io/client-go/tools/record"	"k8s.io/client-go/util/workqueue"	bolingcavalryv1 "github.com/zq2599/k8s-controller-custom-resource/pkg/apis/bolingcavalry/v1"	clientset "github.com/zq2599/k8s-controller-custom-resource/pkg/client/clientset/versioned"	studentscheme "github.com/zq2599/k8s-controller-custom-resource/pkg/client/clientset/versioned/scheme"	informers "github.com/zq2599/k8s-controller-custom-resource/pkg/client/informers/externalversions/bolingcavalry/v1"	listers "github.com/zq2599/k8s-controller-custom-resource/pkg/client/listers/bolingcavalry/v1")const controllerAgentName = "student-controller"const (	SuccessSynced = "Synced"	MessageResourceSynced = "Student synced successfully")// Controller is the controller implementation for Student resourcestype Controller struct {
      	// kubeclientset is a standard kubernetes clientset	kubeclientset kubernetes.Interface	// studentclientset is a clientset for our own API group	studentclientset clientset.Interface	studentsLister listers.StudentLister	studentsSynced cache.InformerSynced	workqueue workqueue.RateLimitingInterface	recorder record.EventRecorder}// NewController returns a new student controllerfunc NewController(	kubeclientset kubernetes.Interface,	studentclientset clientset.Interface,	studentInformer informers.StudentInformer) *Controller {
      	utilruntime.Must(studentscheme.AddToScheme(scheme.Scheme))	glog.V(4).Info("Creating event broadcaster")	eventBroadcaster := record.NewBroadcaster()	eventBroadcaster.StartLogging(glog.Infof)	eventBroadcaster.StartRecordingToSink(&typedcorev1.EventSinkImpl{Interface: kubeclientset.CoreV1().Events("")})	recorder := eventBroadcaster.NewRecorder(scheme.Scheme, corev1.EventSource{Component: controllerAgentName})	controller := &Controller{
      		kubeclientset:    kubeclientset,		studentclientset: studentclientset,		studentsLister:   studentInformer.Lister(),		studentsSynced:   studentInformer.Informer().HasSynced,		workqueue:        workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "Students"),		recorder:         recorder,	}	glog.Info("Setting up event handlers")	// Set up an event handler for when Student resources change	studentInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
      		AddFunc: controller.enqueueStudent,		UpdateFunc: func(old, new interface{}) {
      			oldStudent := old.(*bolingcavalryv1.Student)			newStudent := new.(*bolingcavalryv1.Student)			if oldStudent.ResourceVersion == newStudent.ResourceVersion {
                      //版本一致,就表示没有实际更新的操作,立即返回				return			}			controller.enqueueStudent(new)		},		DeleteFunc: controller.enqueueStudentForDelete,	})	return controller}//在此处开始controller的业务func (c *Controller) Run(threadiness int, stopCh 	defer runtime.HandleCrash()	defer c.workqueue.ShutDown()	glog.Info("开始controller业务,开始一次缓存数据同步")	if ok := cache.WaitForCacheSync(stopCh, c.studentsSynced); !ok {
      		return fmt.Errorf("failed to wait for caches to sync")	}	glog.Info("worker启动")	for i := 0; i < threadiness; i++ {
      		go wait.Until(c.runWorker, time.Second, stopCh)	}	glog.Info("worker已经启动")		glog.Info("worker已经结束")	return nil}func (c *Controller) runWorker() {
      	for c.processNextWorkItem() {
      	}}// 取数据处理func (c *Controller) processNextWorkItem() bool {
      	obj, shutdown := c.workqueue.Get()	if shutdown {
      		return false	}	// We wrap this block in a func so we can defer c.workqueue.Done.	err := func(obj interface{}) error {
      		defer c.workqueue.Done(obj)		var key string		var ok bool		if key, ok = obj.(string); !ok {
      			c.workqueue.Forget(obj)			runtime.HandleError(fmt.Errorf("expected string in workqueue but got %#v", obj))			return nil		}		// 在syncHandler中处理业务		if err := c.syncHandler(key); err != nil {
      			return fmt.Errorf("error syncing '%s': %s", key, err.Error())		}		c.workqueue.Forget(obj)		glog.Infof("Successfully synced '%s'", key)		return nil	}(obj)	if err != nil {
      		runtime.HandleError(err)		return true	}	return true}// 处理func (c *Controller) syncHandler(key string) error {
      	// Convert the namespace/name string into a distinct namespace and name	namespace, name, err := cache.SplitMetaNamespaceKey(key)	if err != nil {
      		runtime.HandleError(fmt.Errorf("invalid resource key: %s", key))		return nil	}	// 从缓存中取对象	student, err := c.studentsLister.Students(namespace).Get(name)	if err != nil {
      		// 如果Student对象被删除了,就会走到这里,所以应该在这里加入执行		if errors.IsNotFound(err) {
      			glog.Infof("Student对象被删除,请在这里执行实际的删除业务: %s/%s ...", namespace, name)			return nil		}		runtime.HandleError(fmt.Errorf("failed to list student by: %s/%s", namespace, name))		return err	}	glog.Infof("这里是student对象的期望状态: %#v ...", student)	glog.Infof("实际状态是从业务层面得到的,此处应该去的实际状态,与期望状态做对比,并根据差异做出响应(新增或者删除)")	c.recorder.Event(student, corev1.EventTypeNormal, SuccessSynced, MessageResourceSynced)	return nil}// 数据先放入缓存,再入队列func (c *Controller) enqueueStudent(obj interface{}) {
      	var key string	var err error	// 将对象放入缓存	if key, err = cache.MetaNamespaceKeyFunc(obj); err != nil {
      		runtime.HandleError(err)		return	}	// 将key放入队列	c.workqueue.AddRateLimited(key)}// 删除操作func (c *Controller) enqueueStudentForDelete(obj interface{}) {
      	var key string	var err error	// 从缓存中删除指定对象	key, err = cache.DeletionHandlingMetaNamespaceKeyFunc(obj)	if err != nil {
      		runtime.HandleError(err)		return	}	//再将key放入队列	c.workqueue.AddRateLimited(key)}

上述代码有以下几处关键点:

a. 创建controller的NewController方法中,定义了收到Student对象的增删改消息时的具体处理逻辑,除了同步本地缓存,就是将该对象的key放入消息中;

b. 实际处理消息的方法是syncHandler,这里面可以添加实际的业务代码,来响应Student对象的增删改情况,达到业务目的;


3. 接下来可以写main.go了,不过在此之前把处理系统信号量的辅助类先写好,然后在main.go中会用到(处理例如ctrl+c的退出),在$GOPATH/src/k8s_customize_controller/pkg目录下新建目录signals;

4. 在signals目录下新建文件signal_posix.go:

// +build !windowspackage signalsimport (	"os"	"syscall")var shutdownSignals = []os.Signal{os.Interrupt, syscall.SIGTERM}
  1. 在signals目录下新建文件signal_posix.go:
package signalsimport (	"os")var shutdownSignals = []os.Signal{os.Interrupt}
  1. 在signals目录下新建文件signal.go:
package signalsimport (        "os"        "os/signal")var onlyOneSignalHandler = make(chan struct{})func SetupSignalHandler() (stopCh         close(onlyOneSignalHandler) // panics when called twice        stop := make(chan struct{})        c := make(chan os.Signal, 2)        signal.Notify(c, shutdownSignals...)        go func() {
                                      close(stop)                                os.Exit(1) // second signal. Exit directly.        }()        return stop}
  1. 接下来可以编写main.go了,在k8s_customize_controller目录下创建main.go文件,内容如下,关键位置已经加了注释,就不再赘述了:
package mainimport (	"flag"	"time"	"github.com/golang/glog"	"k8s.io/client-go/kubernetes"	"k8s.io/client-go/tools/clientcmd"	// Uncomment the following line to load the gcp plugin (only required to authenticate against GKE clusters).	// _ "k8s.io/client-go/plugin/pkg/client/auth/gcp"	clientset "k8s_customize_controller/pkg/client/clientset/versioned"	informers "k8s_customize_controller/pkg/client/informers/externalversions"	"k8s_customize_controller/pkg/signals")var (	masterURL  string	kubeconfig string)func main() {
      	flag.Parse()	// 处理信号量	stopCh := signals.SetupSignalHandler()    // 处理入参	cfg, err := clientcmd.BuildConfigFromFlags(masterURL, kubeconfig)	if err != nil {
      		glog.Fatalf("Error building kubeconfig: %s", err.Error())	}	kubeClient, err := kubernetes.NewForConfig(cfg)	if err != nil {
      		glog.Fatalf("Error building kubernetes clientset: %s", err.Error())	}	studentClient, err := clientset.NewForConfig(cfg)	if err != nil {
      		glog.Fatalf("Error building example clientset: %s", err.Error())	}	studentInformerFactory := informers.NewSharedInformerFactory(studentClient, time.Second*30)    //得到controller	controller := NewController(kubeClient, studentClient,		studentInformerFactory.Bolingcavalry().V1().Students())    //启动informer	go studentInformerFactory.Start(stopCh)    //controller开始处理消息	if err = controller.Run(2, stopCh); err != nil {
      		glog.Fatalf("Error running controller: %s", err.Error())	}}func init() {
      	flag.StringVar(&kubeconfig, "kubeconfig", "", "Path to a kubeconfig. Only required if out-of-cluster.")	flag.StringVar(&masterURL, "master", "", "The address of the Kubernetes API server. Overrides any value in kubeconfig. Only required if out-of-cluster.")}

至此,所有代码已经编写完毕,接下来是编译构建;

编译构建和启动

  1. 在$GOPATH/src/k8s_customize_controller目录下,执行以下命令:
go get k8s.io/client-go/kubernetes/scheme \&& go get github.com/golang/glog \&& go get k8s.io/kube-openapi/pkg/util/proto \&& go get k8s.io/utils/buffer \&& go get k8s.io/utils/integer \&& go get k8s.io/utils/trace
  1. 上述脚本将编译过程中依赖的库通过go get方式进行获取,属于笨办法,更好的方法是选用一种包依赖工具,具体的可以参照k8s的官方demo,这个代码中同时提供了godep和vendor两种方式来处理上面的包依赖问题,地址是:https://github.com/kubernetes/sample-controller
  2. 解决了包依赖问题后,在$GOPATH/src/k8s_customize_controller目录下执行命令go build,即可在当前目录生成k8s_customize_controller文件;
  3. 将文件k8s_customize_controller复制到k8s环境中,记得通过chmod a+x命令给其可执行权限;
  4. 执行命令./k8s_customize_controller -kubeconfig=$HOME/.kube/config -alsologtostderr=true,会立即启动controller,看到控制台输出如下:
[root@master 31]# ./k8s_customize_controller -kubeconfig=$HOME/.kube/config -alsologtostderr=trueI0331 23:27:17.909265   21540 controller.go:72] Setting up event handlersI0331 23:27:17.909450   21540 controller.go:96] 开始controller业务,开始一次缓存数据同步I0331 23:27:18.110448   21540 controller.go:101] worker启动I0331 23:27:18.110516   21540 controller.go:106] worker已经启动I0331 23:27:18.110653   21540 controller.go:181] 这里是student对象的期望状态: &v1.Student{TypeMeta:v1.TypeMeta{Kind:"Student", APIVersion:"bolingcavalry.k8s.io/v1"}, ObjectMeta:v1.ObjectMeta{Name:"object-student", GenerateName:"", Namespace:"default", SelfLink:"/apis/bolingcavalry.k8s.io/v1/namespaces/default/students/object-student", UID:"92927d0d-5360-11e9-9d2a-000c29f1f9c9", ResourceVersion:"310395", Generation:1, CreationTimestamp:v1.Time{Time:time.Time{wall:0x0, ext:63689597785, loc:(*time.Location)(0x1f9c200)}}, DeletionTimestamp:(*v1.Time)(nil), DeletionGracePeriodSeconds:(*int64)(nil), Labels:map[string]string(nil), Annotations:map[string]string{"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"bolingcavalry.k8s.io/v1\",\"kind\":\"Student\",\"metadata\":{\"annotations\":{},\"name\":\"object-student\",\"namespace\":\"default\"},\"spec\":{\"name\":\"张三\",\"school\":\"深圳中学\"}}\n"}, OwnerReferences:[]v1.OwnerReference(nil), Initializers:(*v1.Initializers)(nil), Finalizers:[]string(nil), ClusterName:"", ManagedFields:[]v1.ManagedFieldsEntry(nil)}, Spec:v1.StudentSpec{name:"", school:""}} ...I0331 23:27:18.111105   21540 controller.go:182] 实际状态是从业务层面得到的,此处应该去的实际状态,与期望状态做对比,并根据差异做出响应(新增或者删除)I0331 23:27:18.111187   21540 controller.go:145] Successfully synced 'default/object-student'I0331 23:27:18.112263   21540 event.go:209] Event(v1.ObjectReference{Kind:"Student", Namespace:"default", Name:"object-student", UID:"92927d0d-5360-11e9-9d2a-000c29f1f9c9", APIVersion:"bolingcavalry.k8s.io/v1", ResourceVersion:"310395", FieldPath:""}): type: 'Normal' reason: 'Synced' Student synced successfully

至此,自定义controller已经启动成功了,并且从缓存中获取到了上一章中创建的对象的信息,接下来我们在k8s环境对Student对象做增删改,看看controller是否能做出响应;

验证controller

  1. 新开一个窗口连接到k8s环境,新建一个名为new-student.yaml的文件,内容如下:
apiVersion: bolingcavalry.k8s.io/v1kind: Studentmetadata:  name: new-studentspec:  name: "李四"  school: "深圳小学"
  1. 在new-student.yaml所在目录执行命令kubectl apply -f new-student.yaml;
  2. 返回controller所在的控制台窗口,发现新输出了如下内容,可见新增student对象的事件已经被controller监听并处理:
I0331 23:43:03.789894   21540 controller.go:181] 这里是student对象的期望状态: &v1.Student{TypeMeta:v1.TypeMeta{Kind:"", APIVersion:""}, ObjectMeta:v1.ObjectMeta{Name:"new-student", GenerateName:"", Namespace:"default", SelfLink:"/apis/bolingcavalry.k8s.io/v1/namespaces/default/students/new-student", UID:"abcd77d6-53cb-11e9-9d2a-000c29f1f9c9", ResourceVersion:"370653", Generation:1, CreationTimestamp:v1.Time{Time:time.Time{wall:0x0, ext:63689643783, loc:(*time.Location)(0x1f9c200)}}, DeletionTimestamp:(*v1.Time)(nil), DeletionGracePeriodSeconds:(*int64)(nil), Labels:map[string]string(nil), Annotations:map[string]string{"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"bolingcavalry.k8s.io/v1\",\"kind\":\"Student\",\"metadata\":{\"annotations\":{},\"name\":\"new-student\",\"namespace\":\"default\"},\"spec\":{\"name\":\"李四\",\"school\":\"深圳小学\"}}\n"}, OwnerReferences:[]v1.OwnerReference(nil), Initializers:(*v1.Initializers)(nil), Finalizers:[]string(nil), ClusterName:"", ManagedFields:[]v1.ManagedFieldsEntry(nil)}, Spec:v1.StudentSpec{name:"", school:""}} ...I0331 23:43:03.790076   21540 controller.go:182] 实际状态是从业务层面得到的,此处应该去的实际状态,与期望状态做对比,并根据差异做出响应(新增或者删除)I0331 23:43:03.790120   21540 controller.go:145] Successfully synced 'default/new-student'I0331 23:43:03.790141   21540 event.go:209] Event(v1.ObjectReference{Kind:"Student", Namespace:"default", Name:"new-student", UID:"abcd77d6-53cb-11e9-9d2a-000c29f1f9c9", APIVersion:"bolingcavalry.k8s.io/v1", ResourceVersion:"370653", FieldPath:""}): type: 'Normal' reason: 'Synced' Student synced successfully
  1. 接下来您也可以尝试修改和删除已有的Student对象,观察controller控制台的输出,确定是否已经监听到所有student变化的事件,例如删除的事件日志如下:
I0331 23:44:37.236090   21540 controller.go:171] Student对象被删除,请在这里执行实际的删除业务: default/new-student ...I0331 23:44:37.236118   21540 controller.go:145] Successfully synced 'default/new-student'

小结

至此,controller的编码和验证就全部完成了,现在小结一下自定义controller开发的整个过程:

  1. 创建CRD(Custom Resource Definition),令k8s明白我们自定义的API对象;
  2. 编写代码,将CRD的情况写入对应的代码中,然后通过自动代码生成工具,将controller之外的informer,client等内容较为固定的代码通过工具生成;
  3. 编写controller,在里面判断实际情况是否达到了API对象的声明情况,如果未达到,就要进行实际业务处理,而这也是controller的通用做法;
  4. 实际编码过程并不负载,动手编写的文件如下:
├── controller.go├── main.go└── pkg    ├── apis    │   └── bolingcavalry    │       ├── register.go    │       └── v1    │           ├── doc.go    │           ├── register.go    │           └── types.go    └── signals        ├── signal.go        ├── signal_posix.go        └── signal_windows.go

以上就是k8s自定义controller的整个开发过程,希望在您的开发过程中本文能提供一些参考;

你可能感兴趣的:(oj代码runtime,error)