- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- Angular Material表格的动态列宽设置
t0_54program
编程问题解决手册angular.js前端javascript个人开发
在前端开发中,AngularMaterial表格(mat-table)是非常流行的组件之一。它提供了丰富的功能,如排序、分页和过滤等。然而,有时我们需要动态调整表格列的宽度,以适应不同的数据和用户需求。本文将介绍如何在TypeScript中获取mat-table的列宽,并据此设置相应的过滤器宽度。问题描述在使用AngularMaterial表格时,如何获取每个列的宽度?例如,我们希望为每一列设置一
- 【CSS】实现三栏布局的方式
儒rs
CSScsscss3html三栏布局前端
【CSS】实现三栏布局的方式三栏布局一般指的是页面中一共有三栏,左右两栏宽度固定,中间自适应的布局,三栏布局的具体实现如下:①利用浮动利用浮动,左右两栏设置固定大小,并设置对应方向的浮动。中间一栏设置左右两个方向的margin值。注意这种方式,中间一栏必须放到最后。.container{overflow:hidden;}.left{float:left;width:100px;background
- JVM垃圾回收器详解
高锰酸钾_
jvm测试工具java
JVM垃圾回收器详解年轻代与老年代我们知道在分代GC算法中,将我们的堆内存分为了年轻代与老年代,那为什么要将内存分为年轻代和老年代呢?可以通过调整年轻代和老年代的比例来适应不同类型的应用程序,提高内存的利用率和性能.新生代和老年代使用不同的垃圾回收算法,新生代一般选择复制算法,老年代可以选择标记-清除和标记-整理算法,由程序员来选择灵活度较高。分代的设计中允许只回收新生代(minorgc),如果能
- 华为OD机试九日集训第2期 - 按算法分类,由易到难,循序渐进,提升编程能力和解题技巧,从而提高机试通过率
哪 吒
搬砖工逆袭Java架构师华为od算法九日集训Java
目录一、适合人群二、本期训练时间三、如何参加四、数据结构与算法大纲五、华为OD九日集训第1期第1天、逻辑分析第2天、队列第3天、双指针第4天栈第5天滑动窗口第6天、二叉树第7天、并查集第8天、矩阵第9天、贪心算法六、国内直接使用满血ChatGPT4o、o1、o3-mini-high、Claude3.7Sonnet、满血DeepSeekR11、纯原版ChatGPT、Claude2、技术支持3、支持所
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- Goose开源程序本地机上 AI 代理,能够从头到尾自动执行复杂的开发任务。Goose 不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部 API 交互
struggle2025
策略模式人工智能交互
一、软件下载文末提供程序和源码下载Goose是您的机上AI代理,能够从头到尾自动执行复杂的开发任务。Goose不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部API交互。无论您是在构建想法原型、优化现有代码,还是管理复杂的工程管道,goose都能适应您的工作流程并精确执行任务。goose专为实现最大的灵活性而设计,可与任何LLMAPI配合使用,并与支持
- 仿新浪微博typecho主题源码
酷爱码
phpPHPtypecho博客源码
源码介绍仿新浪微博typecho主题源码,简约美观,适合做个人博客,该源码为主题模板,需要先搭建typecho,然后吧源码放到对应的模板目录下,后台启用即可源码特点支持自适应个性化程度高可设置背景图、顶栏背景图可自定义导航栏、资料卡、关注按钮等文章大图多样化选择,支持随机图适配Typecho最新版本(1.2.1)与PHP8.0源码免费获取仿新浪微博typecho主题源码
- MySQL 8.0 特性的高频面试题及核心知识点
dblens 数据库管理和开发工具
mysqlmysql数据库面试题
1.索引原理与MySQL8.0新特性答案:自适应哈希索引:MySQL8.0自动在频繁查询的索引上构建哈希索引,加速等值查询(如WHEREid=1)。全文索引优化:支持布尔模式(MATCH()AGAINST())和自然语言模式,且索引更新更高效。InnoDB页压缩:支持ZSTD压缩算法,减少存储空间和I/O开销。虚拟列索引:可对虚拟列(ComputedColumns)创建索引,减少存储冗余。2.事务
- 推测未来Agentic形态:Dynamic Cognitive Contextual Agent with Reinforcement Learning (DCCA-RL)
weixin_40941102
语言模型
在AIAgent设计模式领域,我们见证了从简单的ReAct到复杂的LATS的演进,这些模式通过反思、工具使用、规划和多代理协作,极大地提升了AI的自主性和智能性。然而,随着任务复杂度和动态性需求的增加,现有模式逐渐显现出局限性——多Agent协作带来的联合误差和单Agent设计的适应性不足。为此,我们基于对现有模式的全面分析,提出了一个更先进的单Agent框架:DynamicCognitiveCo
- deepseek时代,快消行业AI搜索破局战:3步抢占3亿用户决策入口
白雪讲堂
人工智能大数据
——2025年滋补品牌必须掌握的AI搜索生存法则一、残酷现状:滋补行业正被AI搜索重构规则1.AI搜索用户规模爆发,高净值人群加速迁移3.31亿用户:2025年AI搜索用户规模(QuestMobile数据),中青年、高学历人群占比超60%决策路径缩短50%:用户从“搜索-比价-购买”转变为“提问-获取答案-下单”品牌生死线:当用户搜索“阿胶品牌推荐”,若答案中无品牌露出,等于永久失去客户2.滋补行
- 【IDEA】IDEA常用快捷键(适应包括xml所有类型文件)
Ctrl Z.
intellij-ideaxmljava
IntellijIDEA快速编写代码sout等价于System.out.println();soutp等价于System.out.println(“”);soutv等价于System.out.println(“变量名=”+变量);soutm等价于System.out.println(“当前类名.当前方法”);psvm等价于publicstaticvoidmain(String[]args){}In
- 记:应聘北京思特奇信息技术股份有限公司 C++工程师
指针的值是地址
大四求职c++敏捷开发
一轮,软件上的笔试题这里记录几个问题。1.构成C语言的基本单位是函数。2.敏捷开发:相对于“非敏捷”,更强调程序员团队与业务专家之间的紧密协作、面对面的沟通(认为比书面的文档更有效)、频繁交付新的软件版本、紧凑而自我组织型的团队、能够很好地适应需求变化的代码编写和团队组织方法,也更注重软件开发过程中人的作用。(来自百度百科)一个通俗的博客另一个。我个人的理解就是以人为中心,尽量以口头交流为主,以尽
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- C语言的五套标准:C89、C99、C11、C17和C23(新手必看)
xiecoding.cn
c语言开发语言C语言入门C++C/C++数据结构
作为一门经典的编程语言,C语言标准随着时间不断演进,以适应新的编程需求和技术发展。本文将详细介绍C语言的五套标准:C89、C99、C11、C17和C23。我们将从每套标准的背景、主要特性入手,逐步深入,帮助你理解它们之间的差异以及对编程实践的影响。C89:奠定基础的第一个标准C89,也称为ANSIC,是C语言的第一个正式标准,由美国国家标准协会(ANSI)于1989年发布,后在1990年被国际标准
- DMA的工作模式详解
浩瀚之水_csdn
#嵌入式高速总线研究DMA
DMA(直接内存访问)通过不同的工作模式管理数据传输过程,以适应各种应用场景的需求。以下是其核心工作模式及特点:1.单次传输模式(SingleTransferMode)特点:每次传输仅完成指定数据量的搬运(如1024字节),完成后自动停止。需要CPU重新配置并启动下一次传输。适用场景:非连续或一次性数据传输(如文件单次读写、传感器单次采样)。示例配置(STM32):hdma.Init.Mode=D
- 教师杂志教师杂志社教师编辑部2025年第3期目录
QQ296078736
人工智能
德育与管理基于差异化教学的留学生跨文化适应能力的提升策略研究柯思琼;5-7高校思政教育第一课堂与第二课堂双向育人模式构建策略研究章迎春;李聪;8-10皖西红色文化融入地方开放大学思想政治教育的策略探究马陈晨;王文韬;陈瑞丹;11-13工匠精神融入中职英语专业学生职业素养培养的策略研究吴小燕;14-16高质量发展视域下高中政治教学创新路径研究汪文刚;17-19红色文化教育融入幼儿体育游戏的路径研究陆
- 信息系统运行管理员教程4--信息系统软件运维
LRX_198927
信息系统运行管理运维数据库
第四章信息系统软件运维信息系统软件是信息系统运行的核心,其运维的目的是保证信息系统软件能正常而可靠地运行,并能使系统不断得到改善和提高,以充分发挥作用。第1节信息系统软件运维概述1.信息系统软件运维的概念信息系统软件运维是指信息系统软件在开发完后投入使用后,对信息系统软件进行的改正性维护、适应性维护、完善性维护、预防性维护等软件工程活动。2.信息系统软件的可维护性及维护类型软件可维护性的度量可以从
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- vue2实现表格拖拽功能。整列的数据可以随意拖拽排序,但是行的拖拽只影响当前列
火炬冬天
vue.jsjavascriptelementui
概述本文介绍基于Vue2实现的表格组件,支持以下核心功能:列拖拽排序(整列位置交换)行拖拽排序(每列内部独立排序)自适应列宽与内容溢出提示可视化拖拽反馈效果数据与视图的自动同步功能演示源码分享{{column.label}}-->⠿{{data[rowIndex][column.prop]}}importdraggablefrom'vuedraggable';exportdefault{compo
- 使用 DashVector 进行高效的矢量检索和自查询检索器演示
bavDHAUO
python
在当代AI应用中,向量数据的管理和检索是至关重要的部分。DashVector是一个完全托管的向量数据库服务,提供了对高维稠密和稀疏向量的支持,允许实时插入和过滤搜索。这个服务基于DAMOAcademy自研的高效向量引擎Proxima核心构建,具备云原生和横向扩展能力,能够快速适应不同应用需求。在本篇文章中,我们将演示如何使用DashVector和SelfQueryRetriever来高效地进行矢量
- 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
寻道AI小兵
AI大模型前沿技术追踪人工智能语言模型AIGC
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破目录系列篇章前言一、项目概述二、技术原理(一)异构低秩适应(H-LoRA)(二)分层视觉感知(HVP)(三)三阶段学习策略(TLS)三、
- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- HarmonyOS Next 用户认证应用
架构教育
随着HarmonyOSNext的不断发展,其用户认证功能在安全性、个性化和分布式场景中的应用展现了强大的扩展性和适应性。本文将从进阶功能、分布式场景应用以及定制与优化案例三个方面,深入探讨HarmonyOSNext用户认证的创新与优势。一、HarmonyOSNext用户认证的进阶功能生物特征认证的高级特性HarmonyOSNext在生物特征认证方面引入了多项先进技术。指纹认证通过活体检测技术,能够
- 北约人工智能战略举措与影响分析
岛屿旅人
网络安全人工智能行业分析人工智能网络网络安全web安全安全
文章目录前言一、顶层规划,明确发展方向(一)发布《人工智能战略》,明确AI发展方向和行动指南(二)适应当前需求,适时更新《人工智能战略》(三)制定《数据利用框架政策》,提供政策指导和基础支持二、政策配套,推动细化落实(一)成立北约数据和审查委员会,推动人工智能转化应用(二)成立新兴和颠覆技术咨询小组,指导创新与成果转化(三)成立北约创新委员会,引领前沿技术研究三、加强投资,促进生态布局(一)启动北
- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 遨游科普:三防平板是哪三防?有哪些应用场景?
AORO_BEIDOU
电脑智能手机安全5G信息与通信
在工业智能化与数字化转型的浪潮中,电子设备的耐用性和环境适应性成为关键需求。普通消费级平板电脑虽然功能强大,但在极端环境下往往“水土不服”。而三防平板凭借其独特的防护性能,正逐步成为“危、急、特”场景的核心工具。AOROP300Ultra三防平板那么,“三防”究竟是哪“三防”?“三防”是电子设备领域对防尘、防水、防摔三大防护能力的统称,但这并非简单的功能叠加,而是通过材料、结构、工艺三重创新实现的
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro