一、定义
python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure).这个定义是相对直白的,好理解的,不像其他定义那样学究味道十足(那些学究味道重的解释,在对一个名词的解释过程中又充满了一堆让人抓狂的其他陌生名词,不适合初学者)。下面举一个简单的例子来说明。
#闭包函数的实例
# outer是外部函数 a和b都是外函数的临时变量
def outer( a ):
b = 10
# inner是内函数
def inner():
#在内函数中 用到了外函数的临时变量
print(a+b)
# 外函数的返回值是内函数的引用
return inner
if __name__ == '__main__':
# 在这里我们调用外函数传入参数5
#此时外函数两个临时变量 a是5 b是10 ,并创建了内函数,然后把内函数的引用返回存给了demo
# 外函数结束的时候发现内部函数将会用到自己的临时变量,这两个临时变量就不会释放,会绑定给这个内部函数
demo = outer(5)
# 我们调用内部函数,看一看内部函数是不是能使用外部函数的临时变量
# demo存了外函数的返回值,也就是inner函数的引用,这里相当于执行inner函数
demo() # 15
demo2 = outer(7)
demo2()#17
二、使用闭包注意事项
1.闭包中是不能修改外部作用域的局部变量的
>>> def foo():
... m = 0
... def foo1():
... m = 1
... print m
...
... print m
... foo1()
... print m
...
>>> foo()
0
1
0
从执行结果可以看出,虽然在闭包里面也定义了一个变量m,但是其不会改变外部函数中的局部变量m。
在基本的python语法当中,一个函数可以随意读取全局数据,但是要修改全局数据的时候有两种方法:1 global 声明全局变量 2 全局变量是可变类型数据的时候可以修改
在闭包内函数也是类似的情况。在内函数中想修改闭包变量(外函数绑定给内函数的局部变量)的时候:
1 在python3中,可以用nonlocal 关键字声明 一个变量, 表示这个变量不是局部变量空间的变量,需要向上一层变量空间找这个变量。
2 在python2中,没有nonlocal这个关键字,我们可以把闭包变量改成可变类型数据进行修改,比如列表。
#修改闭包变量的实例
# outer是外部函数 a和b都是外函数的临时变量
def outer( a ):
b = 10 # a和b都是闭包变量
c = [a] #这里对应修改闭包变量的方法2
# inner是内函数
def inner():
#内函数中想修改闭包变量
# 方法1 nonlocal关键字声明
nonlocal b
b+=1
# 方法二,把闭包变量修改成可变数据类型 比如列表
c[0] += 1
print(c[0])
print(b)
# 外函数的返回值是内函数的引用
return inner
if __name__ == '__main__':
demo = outer(5)
demo() # 6 11
从上面代码中我们能看出来,在内函数中,分别对闭包变量进行了修改,打印出来的结果也确实是修改之后的结果。以上两种方法就是内函数修改闭包变量的方法。
2.python循环中不包含域的概念。
flist = []
for i in xrange(3):
def func(x):
return x*i
flist.append(func)
for f in flist:
print f(2)
按照大家正常的理解,应该输出的是0, 2, 4对吧?但实际输出的结果是:4, 4, 4. 原因是什么呢?loop在python中是没有域的概念的,flist在像列表中添加func的时候,并没有保存i的值,而是当执行f(2)的时候才去取,这时候循环已经结束,i的值是2,所以结果都是4。
其实修改方案也挺简单的:
# avoid closures and use default args which copy on function definition
for i in xrange(3):
def func(x, i=i):
return x*i
flist.append(func)
# or introduce an extra scope to close the value you want to keep around:
for i in xrange(3):
def makefunc(i):
def func(x):
return x*i
return func
flist.append(makefunc(i))
# the second can be simplified to use a single makefunc():
def makefunc(i):
def func(x):
return x*i
return func
for i in xrange(3):
flist.append(makefunc(i))
# if your inner function is simple enough, lambda works as well for either option:
for i in xrange(3):
flist.append(lambda x, i=i: x*i)
def makefunc(i):
return lambda x: x*i
for i in xrange(3):
flist.append(makefunc(i))
for f in flist:
print f(2)
在func外面再定义一个makefunc函数,func形成闭包,结果就正确了。
3. 闭包的作用
闭包可以保存当前的运行环境,以一个类似棋盘游戏的例子来说明。假设棋盘大小为50*50,左上角为坐标系原点(0,0),我需要一个函数,接收2个参数,分别为方向(direction),步长(step),该函数控制棋子的运动。 这里需要说明的是,每次运动的起点都是上次运动结束的终点。
参考代码:
origin = [0, 0] # 坐标系统原点
legal_x = [0, 50] # x轴方向的合法坐标
legal_y = [0, 50] # y轴方向的合法坐标
def create(pos=origin):
def player(direction,step):
# 这里应该首先判断参数direction,step的合法性,比如direction不能斜着走,step不能为负等
# 然后还要对新生成的x,y坐标的合法性进行判断处理,这里主要是想介绍闭包,就不详细写了。
new_x = pos[0] + direction[0]*step
new_y = pos[1] + direction[1]*step
pos[0] = new_x
pos[1] = new_y
#注意!此处不能写成 pos = [new_x, new_y],原因在上文有说过
return pos
return player
player = create() # 创建棋子player,起点为原点
print player([1,0],10) # 向x轴正方向移动10步
print player([0,1],20) # 向y轴正方向移动20步
print player([-1,0],10) # 向x轴负方向移动10步
输出为:
[10, 0]
[10, 20]
[0, 20]
参考连接:
Closure (computer programming)
About python closure
Python中的闭包实例详解python脚本之家
深入浅出python闭包
谈谈自己的理解:python中闭包,闭包的实质