- 气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)
树谷-胡老师
资源arcgis
气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)数据分享:气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1
- Python 爬虫实战:电影评论数据抓取与自然语言处理
西攻城狮北
python爬虫开发语言
引言作为一名对电影数据和自然语言处理感兴趣的内容创作者,我决定利用Python爬虫技术抓取IMDb上的电影评论数据,并进行自然语言处理分析。这不仅可以帮助我们了解观众对电影的反馈,还能为电影制作方提供有价值的参考。一、项目背景IMDb(互联网电影数据库)是全球最大的电影数据库,用户可以在上面查看电影信息和用户评论。本项目旨在爬取IMDb上的电影评论,并对评论进行自然语言处理(NLP),以提取情感、
- HashMap的奇幻漂流:当一个数组决定去整容
桃木山人
深挖面经哈希算法算法数据结构
标准答案(面试官最爱版)HashMap实现原理:数据结构:数组+链表/红黑树(Java8+)哈希算法:(h=key.hashCode())^(h>>>16)索引计算:(n-1)&hash(n为数组长度)冲突解决:链表→红黑树(阈值=8),树→链表(阈值=6)扩容机制:2倍扩容,负载因子默认0.75用程序员黑话:“它就是个会变形的瑞士卷——平时是夹心饼干(数组+链表),吃撑了变千层蛋糕(红黑树)”一
- 源自神话的写作要义之英雄之旅
博文视点
生活情感框架体育
源自神话的写作要义之英雄之旅英雄之旅从本质上说,不论如何变化,英雄的故事总是一段旅程。英雄离开舒适、平淡的地方,到充满挑战的陌生世界去冒险。它可以是外部之旅,去一个明确的地点:迷宫、森林、洞穴、陌生的城市或者国度——这个新的地域会成为英雄和反派及挑战者角力的竞技场。而也有很多故事让英雄去经历一段内心之旅,在头脑、内心、精神领域里展开旅途。在所有精彩的故事中,英雄都会成长和改变,在旅途中改变自己的人
- Python爬虫实战:从青铜到王者的数据采集进化论
Loving_enjoy
实用技巧爬虫python
#开篇:当你打开浏览器时,爬虫程序在暗处露出了姨母笑某日凌晨3点,程序员老张盯着满屏的404错误,突然领悟了爬虫的真谛——这哪里是数据采集,分明是与网站运维人员斗智斗勇的谍战游戏!本文将带你体验从"HelloWorld"式爬虫到工业级采集系统的奇幻漂流,全程高能预警,请系好安全带。---###第一章青铜时代:初学者的三板斧####1.1环境搭建:你的第一把手术刀安装Python就像选择武器库:``
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 《灵珠觉醒:从零到算法金仙的C++修炼》卷三·天劫试炼(40)翻天印压回文串 - 最长回文子序列(区间DP)
轻口味
算法c++代理模式
《灵珠觉醒:从零到算法金仙的C++修炼》卷三·天劫试炼(40)翻天印压回文串-最长回文子序列(区间DP)哪吒在数据修仙界中继续他的修炼之旅。这一次,他来到了一片神秘的回文森林,森林中有一本古老的翻天印,印身闪烁着神秘的光芒。森林的入口处有一块巨大的石碑,上面刻着一行文字:“欲破此林,需以翻天印之力,压回文串,区间DP显真身。”哪吒定睛一看,石碑上还有一行小字:“字符串"bbbab"的最长回文子序列
- 松鼠豆豆的坚果侦探社:一棵会长大的「吃货决策树」
安意诚Matrix
机器学习故事汇决策树算法机器学习
松鼠豆豆的坚果侦探社:一棵会长大的「吃货决策树」秋日森林的烦恼秋分那天,小松鼠豆豆的树洞炸开了锅。"这是什么怪东西呀!“豆豆叼着一颗月牙形的坚果,爪子在满地的盲盒壳里扒拉——红肚皮的橡果、带刺的板栗、圆溜溜的山核桃,还有三颗长得一模一样的"迷你橄榄球”。昨天她刚因为咬到苦杏仁酸得跳脚,现在看着堆成小山的坚果,尾巴都愁成了毛球。"要想不踩雷,得学会给坚果分类!"妈妈松鼠啃着松果笑,"就像你小时候认蘑
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 第一章:欢迎来到 HTML 星球!
我自纵横2023
HTML教程html前端
第一章:欢迎来到HTML星球!1.1宇宙的基石:HTML是什么?嘿,亲爱的探险家!欢迎踏上这场奇妙的HTML星球大冒险之旅!在我们正式踏入这个充满奇幻色彩的星球之前,咱们得先搞清楚,HTML到底是个啥玩意儿。想象一下,整个互联网就像是一个浩瀚无垠的宇宙,而网页呢,就是这个宇宙里的各个星球。每个星球都有自己独特的风貌和故事,而HTML就是建造这些星球的基石。它就像是宇宙里的乐高积木,咱们可以用各种各
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 数字识别项目
不要天天开心
机器学习人工智能深度学习算法
集成算法·Bagging·随机森林构造树模型:由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。集成算法·Stacking·堆叠:很暴力,拿来一堆直接上(各种分类器都来了)·可以堆叠各种各样的分类器(KNN,SVM,RF等等)·分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练实现神经网络实例利用PyTorch内置函数mnist下载数据。·利用torchvision对数据进
- 考研系列-数据结构第六章:图(上)
Nelson_hehe
#数据结构笔记数据结构图的存储邻接表邻接矩阵十字链表法图的基本操作
目录写在前面一、图的基本概念1.图的定义2.图的种类(1)无向图、有向图(2)简单图、多重图3.顶点的度4.顶点与顶点之间关系描述5.图的连通性(1)连通图、强连通图(2)连通分量、强连通分量(3)生成树、生成森林6.带权图7.几种特殊形态的图(会识别、掌握特性)8.总结9.习题总结(1)选择题(2)简答题二、图的存储1.邻接矩阵(1)存储结构(存储非带权图)(2)邻接矩阵基本性质(3)邻接矩阵存
- 探秘区块链:数字世界的信任基石
qzfeiyi
请勿购买嵌入式硬件
探秘区块链:数字世界的信任基石在神秘的数字世界里,有一项技术正悄然崛起,它就像一位公正无私的大管家,默默地维护着数据的安全与信任,这就是区块链技术。今天,就让我们一起踏上这段充满奇幻色彩的区块链探秘之旅。想象一下,有一个庞大的账本,这个账本可不是普通的账本,它被复制了无数份,分散在世界各地的计算机上。每一次交易,就像在这个账本上记录一笔账,而且这个记录无法被篡改,也不会丢失。这,就是区块链的基本概
- R语言 决策树、svm支持向量机、随机森林
别叫我名字20
R语言决策树支持向量机r语言
本人正在学习R语言,想利用这个平台记录自己一些自己的学习情况,方便以后查找,也想分享出来提供一些资料给同样学习R语言的同学们。(如果内容有错误,欢迎大家批评指正)1.决策树我们使用的还是RStudio自带的数据集iris。#######################决策树模型install.packages("rpart")#安装库library("rpart")dt<-function(dat
- 转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点
qq_43625764
笔记KNN算法随机森林朴素贝叶斯算法机器学习算法决策树
转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点1转换器与预估器实例化转换器fit_transform转换实例化预估器fit将训练集的特征值和目标值传进来fit运行完后,已经把这个模型训练出来了2KNN算法根据你的邻居来推测你的类别,如何确定谁是你的邻居(用距离公式,最常用的是欧式距离)还有曼哈顿距离–求绝对值,明可夫斯基距离(欧式距离和曼哈顿距离的一个退p=1曼哈顿距离
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 基于pandas的哪吒2电影评论数据分析
2302_80651048
数据分析大数据数据挖掘
一、项目背景《哪吒2》作为国产动画电影的续作,凭借前作积累的口碑与IP效应,上映后引发广泛讨论。为深入理解观众对影片的真实反馈,挖掘市场评价中的关键信息,本项目基于电影评论数据集,从评分、情感倾向、地域分布、时间趋势等多维度展开分析,旨在为电影制作方、宣发团队及行业研究者提供数据驱动的决策支持。二、分析目标观众评价洞察:解析评分分布与情感倾向,识别影片的核心优势与争议点。用户行为分析:探索评论时间
- Python与数据可视化案例:电影评分可视化
master_chenchengg
pythonpython办公效率python开发IT
Python与数据可视化案例:电影评分可视化电影评分数据的魅力:为什么可视化很重要数据收集:如何获取电影评分数据使用API接口网络爬虫技术数据清洗与预处理:让数据变得干净整洁可视化实战:用Matplotlib和Seaborn绘制电影评分图表电影评分数据的魅力:为什么可视化很重要对于电影爱好者而言,电影评分不仅仅是数字那么简单,它承载着无数影迷的期待与梦想。想象一下,当你站在电影院门口,面对琳琅满目
- 每日一题之宝石组合
Ace'
算法c++
问题描述在一个神秘的森林里,住着一个小精灵名叫小蓝。有一天,他偶然发现了一个隐藏在树洞里的宝藏,里面装满了闪烁着美丽光芒的宝石。这些宝石都有着不同的颜色和形状,但最引人注目的是它们各自独特的“闪亮度”属性。每颗宝石都有一个与生俱来的特殊能力,可以发出不同强度的闪光。小蓝共找到了NN枚宝石,第ii枚宝石的“闪亮度”属性值为HiHi,小蓝将会从这NN枚宝石中选出三枚进行组合,组合之后的精美程度SS可以
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- Python提取评论(使用pycharm+Python)
发光的大猫
Python+pycharmpythonpycharm
一、安装调用所要用到的库函数importrequestsfrombs4importBeautifulSoup二、自定义根据每页影评的url爬取影评的方法#1.请求urldefgetData(url):三、请求头为字典格式headers={ 'User-Agent':'Mozilla/5.0(WindowsNT10.0;Win64;x64)AppleWebKit/537.36(KHTML,l
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- 普通人如何用DeepSeek成为创作大师?
碳基学AI
人工智能大数据深度学习知识图谱ai
近期,一只头戴尖顶帽、手握魔杖的AI橘猫风靡全球社交平台。在Instagram上,相关视频播放量突破1200万次;在小红书平台,相关话题阅读量超过1亿次,甚至衍生出迷因币和周边商品。这场现象级传播的背后,正是DeepSeek等AI技术的突破,使得普通用户也能用“魔法”创造高质量内容,开启了萌宠与奇幻元素的全民创作时代。技术赋能:从“专业壁垒”到“一键生成”过去,制作高质量动画需要专业软件和漫长的制
- 捍卫原创,抵制抄袭 —— 一个我的世界玩家的心声
Small踢倒coffee_氕氘氚
经验分享
作为一个深度沉迷《我的世界》多年的忠实玩家,《我的世界》对我而言,早已不是一款简单的游戏,它是我挥洒创意的奇幻天地,是我放松心灵的避风港。在这个充满无限可能的方块世界里,我耗费了无数个日夜,挖掘矿石、砍伐树木,精心搭建起属于自己的梦幻家园。从最初简陋的木屋,到如今壮观的城堡,每一块方块的堆砌都饱含着我的心血与热情。还记得初次踏入《我的世界》时,那种震撼至今仍历历在目。丰富多样的地形,从高耸入云的山
- Unity插件合集(二十):涵盖了场景构建、角色设计、物理系统、特效、UI、音效等多个方面,适用于不同类型的游戏开发
Unity游戏资源学习屋
Unity插件
这些Unity插件涵盖了广泛的游戏开发需求,包括低多边形风格的环境和角色资源、科幻与奇幻主题的场景和人物模型、强大的物理引擎与交互工具、以及实用的开发工具和系统,如脚本化对象架构和动画工具。此外,插件还提供了高质量的视觉特效(如镜头光晕和水面Shader)、音效包(包括魔法与元素音效)以及2D游戏开发所需的基础资源和模板。这些插件适用于多种游戏类型的开发,帮助提升游戏的画面、玩法和开发效率。这些U
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,