- LoadRunner 11 性能测试全面教程
金融先生-Frank
本文还有配套的精品资源,点击获取简介:LoadRunner11(LR11)是HP开发的一款企业级性能测试工具,支持多应用程序类型的负载测试,用于性能评估、瓶颈识别和系统优化。教程详细介绍LR11的组件功能、脚本开发、场景设置、测试执行、结果分析、性能指标监测、故障诊断以及自动化测试等,提供从初级到高级的完整学习路径。1.LoadRunner11(LR11)功能概述LoadRunner11(LR11
- 前端面试:[React] Recoil 里面 selector 支持哪些参数?
returnShitBoy
前端面试react.js
在Recoil中,selector用于派生状态并可以通过传递不同的参数来实现更强大的功能。创建selector时,可以传入以下参数:1.key类型:string描述:是selector的唯一标识符。每个selector和atom都必须有一个唯一的key,否则会抛出错误。这个key用于在Recoil状态树中进行识别。示例:javascriptconstmySelector=selector({key
- 17-OpenCVSharp 中实现 Halcon 的 Points_Harris算子(Harris 角点检测)
观视界
#opencv人工智能计算机视觉图像处理矩阵
专栏地址:《OpenCV功能使用详解200篇》《OpenCV算子使用详解300篇》《Halcon算子使用详解300篇》内容持续更新,欢迎点击订阅在OpenCVSharp中实现类似于Halcon中的Points_Harris算子,实际上就是实现Harris角点检测算法。Harris角点检测算法是用于检测图像中的角点特征,可以用来进行图像匹配、物体识别等任务。Halcon提供的Points_Harri
- Umi-OCR:解锁高效文字识别的新时代
水熠芝Dark-Haired
Umi-OCR:解锁高效文字识别的新时代Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda项目介绍在数字化浪潮席卷全球的今天,文字识别技术已成为提升工作效率和生活质量的关键工具。Umi-OCR,作为一款基于深度学习技术的开源文字识别工具,凭借其强大的功能和高效的性能,迅速成为众多用户的首选。无
- Umi-OCR:一款强大而高效的文字识别工具
裘心国Trent
Umi-OCR:一款强大而高效的文字识别工具Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda介绍Umi-OCR是一款基于深度学习技术的开源文字识别工具,特别适合日常办公、学术研究及数据分析等场景。它能有效解决将图像中的文字快速转化为可编辑文本的需求,极大提升工作效率。此工具依托于先进的计算机
- 自动语音识别(ASR):技术、应用与未来
ajie1117
语音识别人工智能
自动语音识别(ASR):技术、应用与未来1.ASR简介自动语音识别(ASR,AutomaticSpeechRecognition)是一种将语音转换为文本的技术。它利用人工智能(AI)、深度学习和自然语言处理(NLP)技术来识别和理解人类的语言,使计算机能够与人类进行更自然的交互。2.ASR的工作原理ASR的核心流程通常包括以下几个步骤:语音信号采集:通过麦克风或其他设备获取音频数据。预处理:去除噪
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 兵器室门禁管理系统/智慧库室管控系统
立控信息
控制系统门禁安全入侵报警环境控制
智慧营区库室联管联控系统对营区库室安全管理意义重大,它集成指纹、人脸、动态密码等多元身份识别技术,实现严谨门禁管控,非法开门即报警,断网也能保安全;整合多种报警设备,自动布防,全方位监测入侵;具备视频交互与监控功能,方便沟通和监督;还能依据预设温湿度自动调控环境,从多维度构建起全面、智能、高效的安全管理体系,为营区库室安全稳定运行提供坚实保障。
- 小科普《DNS服务器》
Hum8le
服务器运维
DNS服务器详解1.定义与核心作用DNS(域名系统)服务器是互联网的核心基础设施,负责将人类可读的域名(如www.example.com)转换为机器可识别的IP地址(如192.0.2.1),从而实现设备间的通信。其核心功能包括:域名解析:将域名转换为IP地址,简化用户访问网站的流程。负载均衡:通过将同一域名映射到多个IP地址,分配流量以提升服务稳定性和性能。缓存加速:存储近期查询结果,减少重复解析
- python离线语音转文本_使用Python将语音转换为文本的方法
weixin_39760619
python离线语音转文本
使用Python将语音转换为文本的方法,语音,转换为,文本,您的,麦克风使用Python将语音转换为文本的方法易采站长站,站长之家为您整理了使用Python将语音转换为文本的方法的相关内容。语音识别是计算机软件识别口语中的单词和短语,并将其转换为可读文本的能力。那么如何在Python中将语音转换为文本?如何使用SpeechRecognition库在Python中将语音转换为文本?我们不需要从头开始
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- VScode使用教程
晓码bigdata
C++pythonvscode编辑器
VScode使用教程1VScode概览1.1特性1.2VScode下载安装1.3VScode基本使用1.4vsCode安装插件的3种方式1.5不能联网的电脑vscode安装插件3种方式1.6vsCode调试代码(3种模式)2VScode编写c++代码2.1怎么编写c++代码2.2出现了c++自带库无法识别的情况,是因为没配置好编译器gcc路径2.3使用gcc编译器编译c++程序报错找不到std3V
- AI图像技术:真实与虚假的博弈
XianxinMao
人工智能人工智能计算机视觉深度学习
标题:AI图像技术:真实与虚假的博弈文章信息摘要:随着AI生成图像技术的快速发展,虚假信息的传播风险急剧增加,引发了社会对信息真实性的广泛担忧。AI生成的图像几乎与真实照片无法区分,可能被用于制造虚假新闻、恶意攻击和商业欺诈,导致社会信任危机。为应对这一挑战,Meta开发了StableSignature技术,通过在AI生成图像中嵌入不可见且防篡改的水印,有效识别和追踪图像来源。这项技术具有鲁棒性、
- 【详细解决】pycharm 终端出现报错:“Failed : 无法将“Failed”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。
一只小白跳起来
笔记pycharmpythonide
昨天在终端一顿操作后突然打开pycharm时就开始报错:无法将“Failed”项识别为cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。所在位置行:1字符:1+Failedtoactivatecondaenvironment.+~~~~~~+CategoryInfo:ObjectNotFound:(Failed:String)[],Com
- GOT-OCR2.0:突破性端到端架构与高精度文本识别的技术创新
XianxinMao
人工智能深度学习
GOT-OCR2.0在技术上的突破与优势GOT-OCR2.0在技术上实现了对传统OCR系统的显著超越,主要体现在其采用了统一的端到端(End-to-End)架构。这一架构的创新性设计带来了多方面的提升,具体包括以下几个关键方面:1.统一的端到端架构传统OCR系统的局限:传统的OCR流程通常由多个独立的模块组成,如图像预处理、字符分割、特征提取、分类识别等。这种多步处理方式不仅增加了系统的复杂性,还
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- 解锁豆瓣高清海报(三)从深度爬虫到URL构造,实现极速下载
dreadp
爬虫pythonbeautifulsouphtml后端
脚本地址:项目地址:GazerPosterBandit_v2.py前瞻之前的PosterBandit.py是按照深度爬虫的思路一步步进入海报界面来爬取,是个值得学习的思路,但缺点是它爬取慢,仍然容易碰到豆瓣的418错误,本文也会指出彻底解决旧版418错误的方法并提高爬取速度.现在我将介绍优化版,这个版本通过直接构造URL来实现获取海报原图,准确识别、更快爬取.本文会重点讲解动态headers及其应
- 【微信小程序(云开发模式)变通实现DeepSeek支持语音】
技术与健康
微信小程序notepad++小程序
整体架构前端(微信小程序):使用微信小程序云开发能力,实现录音功能。将录音文件上传到云存储。调用云函数进行语音识别和DeepSeek处理。界面模仿DeepSeek,支持文本编辑。后端(云函数+Node.js):使用云函数调用腾讯云语音识别(ASR)服务。调用DeepSeekAPI处理文本。步骤1:初始化云开发环境在微信开发者工具中创建小程序项目,并开通云开发。在project.config.jso
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 录音文字转换专家,一键搞定音转文字,让你的工作效率飞起来!
开开心心_Every
pythoneclipsedjangovirtualenvpygametornadoflask
录音转文字助手是一款功能丰富的app,主要聚焦于语音识别、音频转文字以及实时语音翻译等功能。在这个app中,其内置了一套强大的识别系统。这套系统具备快速且无损转换的能力,无论是语音内容,还是音频文件内容,它都能够迅速地将其转换为文字内容并输出。而且,该app的功能不仅局限于此,它还可以进行多语种的翻译操作,这为不同语言需求的用户提供了极大的便利。帮助中心帮助中心相关问题解答:一、安装报错的处理安卓
- 视频转音频, 音频转文字
言之。
python音视频
Ubuntu24环境准备#系统级依赖sudoaptupdate&&sudoaptinstall-yffmpegpython3-venvgitbuild-essentialpython3-dev#Python虚拟环境python3-mvenv~/ai_summarysource~/ai_summary/bin/activate核心工具链工具用途安装命令Whisper语音识别pipinstallope
- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- pytesseract
Claroja
图像识别tesseract
方法get_tesseract_version,返回tesseract的版本.image_to_string,返回识别的字符串image_to_boxes,返回字符和位置image_to_data,返回边框,置信度和其他的信息,可以参考TesseractTSVimage_to_osd,返回orientationandscriptdetection参数imageObject,PILImage/Num
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- pytesseract,一个超强的 Python 库!
大模型开发
python开发语言
大家好,今天为大家分享一个超强的Python库-pytesseract。在当今数字化时代,文字识别技术扮演着越来越重要的角色。Pythonpytesseract库是一个强大的工具,能够帮助开发者轻松实现图像中文字的识别。本文将深入探讨pytesseract库的原理、功能、使用方法以及实际应用场景,并提供丰富的示例代码,让读者更全面地了解这个工具库。什么是Pythonpytesseract库?Pyt
- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- 前端性能优化之SSR优化
xiangzhihong8
前端前端
我们常说的SSR是指Server-SideRendering,即服务端渲染,属于首屏直出渲染的一种方案。SSR也是前端性能优化中最常用的技术方案了,能有效地缩短页面的可见时间,给用户带来很好的体验。SSR渲染方案一般来说,我们页面加载会分为好几个步骤:请求域名,服务器返回HTML资源。浏览器加载HTML片段,识别到有CSS/JavaScript资源时,获取资源并加载。现在大多数前端页面都是单页面应
- 合合信息名片全能王上架原生鸿蒙应用市场,成为首批数字名片类应用
华为harmonyos
长期以来,名片都是企业商务沟通的重要工具。随着企业数字化转型,相较于传统的纸质名片,数字名片对于企业成员拓展业务、获取商机、提升企业形象等方面发挥着重要作用。近期,合合信息旗下名片全能王正式上线原生鸿蒙应用市场,成为首批上线的数字名片类应用,帮助用户用AI扫描、识别和管理名片,提高商务沟通和客户数据管理的效率。名片全能王是一款智能名片及人脉管理APP,基于合合信息的智能文字识别技术,可将复杂场景下
- 知识库在意图识别中扮演着**数据支撑**和**语义理解辅助**的双重角色
PersistDZ
大数据与AI人工智能
知识库在意图识别中扮演着数据支撑和语义理解辅助的双重角色,而训练智能客服的意图识别Agent需要结合知识库的结构化数据与机器学习技术。以下是详细解析:一、知识库在意图识别中的作用1.提供标注数据意图标签定义:知识库中存储了预先定义的意图分类体系(如“订单查询”“退换货”“投诉”等),为模型提供明确的训练目标。标注样本:知识库包含大量用户对话历史及其对应的意图标签,是训练监督学习模型的核心数据源。2
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默