许多复杂的求解问题,都可以转换成方程f(x)=0的求解问题。这一系列的解叫做方程的根。对于非线性方程的求解,在自变量范围内往往有多个解,我们将此变化区域分为多个小的子区间,对每个区间进行分别求解。我们在求解过程中,选取一个近似值或者近似区间,然后运用迭代方法逐步逼近真实解。
方程求根的常用迭代法有:二分法、不动点迭代、牛顿迭代法、弦截法
牛顿迭代法(Newton’s method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数的泰勒级数的前面几项来寻找方程的根。
参考链接:
用python算微积分及牛顿迭代求解高阶方程
考察一般形式的函数方程f(x)=0,首先运用校正技术建立迭代公式,设已知它的近似根xk,则自然要求校正值x(k+1)=xk+∆x能更好的满足所给方程,即 f(xk+∆x)≈0,将其左端用线性主部f(xk)+f’(xk)* ∆x代替,而令f(xk)+f’(xk)*∆x=0,这是关于增量∆x的线性方程,据此定出∆x=-f(xk)/f’(xk),从而关于校正值x(k+1)=xk+∆x有如下计算公式:X(k+1)=xk-f(xk)/f’(xk)
这就是著名的牛顿公式。Newton法的突出优点是速度快,但它有个明显的缺点是每一步迭代需要提供导数值f’(xk),如果函数f(x)比较复杂,致使导数的计算比较困难,那么使用牛顿公式是不方便的。
通常最高效的方法:牛顿法。它是求解方程f(x)=0的一种重要方法,它的最大优点是方程在单根附近具有较高的收敛速度,且算法逻辑简单。它还可以用于求代数方程的重根、复根。但是由于牛顿法是局部收敛的,它的收敛性依赖于初值x0的选取。并且每一步迭代除了需要计算f(Xk)外,还需要计算f(Xk)的导数,当f(x)比较复杂时(缺点明显),该方法是不方便的。
求方程式:x = exp(-x)在0.5附近的根
即求方程式xexp(x)-1=0在0.5附近的根
代码如下:
from sympy import *
x = symbols('x')
x0 = 0.5
x_list = [x0]
i = 0
def f(x):
f = x * exp(x) - 1
return f
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
if error < 10 ** (-6):
print(f'迭代第{i}次后,误差小于10^(-6),误差为{error}')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
结果:
迭代第4次后,误差小于10^(-6),误差为2.17717477197250E-10
所求方程式的根为0.567143290409784
from sympy import *
x = symbols('x')
x0 = 0.5
x_list = [x0]
i = 0
def f(x):
f = x * exp(x) - 1
return f
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
if error == 0:
print(f'迭代第{i}次后,误差为0')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
结果:
迭代第6次后,误差为0
所求方程式的根为0.567143290409784
代码:
from sympy import *
import matplotlib.pyplot as plt
x = symbols('x')
x0 = 0.5
x_list = [x0]
x_values = []
y_values = []
i = 0
def f(x):
f = x * exp(x) - 1
return f
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
x_values.append(i)
y_values.append(error)
if error == 0:
print(f'迭代第{i}次后,误差为0')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
#设置绘图风格
plt.style.use('ggplot')
#处理中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
#坐标轴负号的处理
plt.rcParams['axes.unicode_minus']=False
#横坐标是迭代次数
#纵坐标是误差值
plt.plot(x_values,
y_values,
color = 'steelblue', # 折线颜色
marker = 'o', # 折线图中添加圆点
markersize = 3, # 点的大小
)
# 修改x轴和y轴标签
plt.xlabel('迭代次数')
plt.ylabel('误差值')
# 显示图形
plt.show()
结果:
迭代第6次后,误差为0
所求方程式的根为0.567143290409784
求方程式:x3 - 0.165x2 + 3.99310**(-4) = 0在(0,0.11)的根
from sympy import *
from sympy.abc import x
def func(x):
return x**3 - 0.165*x**2 + 3.993*10**(-4)
result = solveset(func(x), x, Interval(0, 0.11))
print(result)
结果:
FiniteSet(0.0623775815137495)
代码:
from sympy import *
x = symbols('x')
xl = 0 #区间下限
xu = 0.11 #区间上限
x0 = (xl+xu)/2 #迭代初始值
x_list = [x0]
i = 0
def f(x):
f = x**3 - 0.165*x**2 + 3.993*10**(-4)
return f
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
if error < 10**(-6):
print(f'迭代第{i}次后,误差小于10^-6')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
结果:
迭代第3次后,误差小于10^-6
所求方程式的根为0.0623775815137494
from sympy import *
x = symbols('x')
xl = 0 #区间下限
xu = 0.11 #区间上限
x0 = (xl+xu)/2 #迭代初始值
x_list = [x0]
i = 0
def f(x):
f = x**3 - 0.165*x**2 + 3.993*10**(-4)
return f
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
if error == 0:
print(f'迭代第{i}次后,误差等于0')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
结果:
迭代第5次后,误差等于0
所求方程式的根为0.0623775815137495
代码:
from sympy import *
import matplotlib.pyplot as plt
x = symbols('x')
xl = 0 #区间下限
xu = 0.11 #区间上限
x0 = (xl+xu)/2 #迭代初始值
x_list = [x0]
i = 0
def f(x):
f = x**3 - 0.165*x**2 + 3.993*10**(-4)
return f
x_values = []
y_values = []
while True:
if diff(f(x),x).subs(x,x0) == 0:
print('极值点:',x0)
break
else:
x0 = x0 - f(x0)/diff(f(x),x).subs(x,x0)
x_list.append(x0)
if len(x_list) > 1:
i += 1
error = abs((x_list[-1] - x_list[-2]) / x_list[-1])
x_values.append(i)
y_values.append(error)
if error == 0:
print(f'迭代第{i}次后,误差等于0')
break
else:
pass
print(f'所求方程式的根为{x_list[-1]}')
#设置绘图风格
plt.style.use('ggplot')
#处理中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
#坐标轴负号的处理
plt.rcParams['axes.unicode_minus']=False
#横坐标是迭代次数
#纵坐标是误差值
plt.plot(x_values,
y_values,
color = 'steelblue', # 折线颜色
marker = 'o', # 折线图中添加圆点
markersize = 3, # 点的大小
)
# 修改x轴和y轴标签
plt.xlabel('迭代次数')
plt.ylabel('误差值')
# 显示图形
plt.show()
结果:
迭代第5次后,误差等于0
所求方程式的根为0.0623775815137495