ID3决策树的仿真编程

ID3决策树的仿真编程_第1张图片

function D = ID3(train_features, train_targets, params, region)

 

% Classify using Quinlan's ID3 algorithm

% Inputs:

% features - Train features

% targets     - Train targets

% params - [Number of bins for the data, Percentage of incorrectly assigned samples at a node]

% region     - Decision region vector: [-x x -y y number_of_points]

%

% Outputs

% D - Decision sufrace

 

[Ni, M]    = size(train_features);

 

%Get parameters

[Nbins, inc_node] = process_params(params);

inc_node    = inc_node*M/100;

 

%For the decision region

N           = region(5);

mx          = ones(N,1) * linspace (region(1),region(2),N);

my          = linspace (region(3),region(4),N)' * ones(1,N);

flatxy      = [mx(:), my(:)]';

 

%Preprocessing

[f, t, UW, m]      = PCA(train_features, train_targets, Ni, region);

train_features  = UW * (train_features - m*ones(1,M));;

flatxy          = UW * (flatxy - m*ones(1,N^2));;

 

%First, bin the data and the decision region data

[H, binned_features]= high_histogram(train_features, Nbins, region);

[H, binned_xy]      = high_histogram(flatxy, Nbins, region);

 

%Build the tree recursively

disp('Building tree')

tree        = make_tree(binned_features, train_targets, inc_node, Nbins);

 

%Make the decision region according to the tree

disp('Building decision surface using the tree')

targets = use_tree(binned_xy, 1:N^2, tree, Nbins, unique(train_targets));

 

D = reshape(targets,N,N);

%END

 

function targets = use_tree(features, indices, tree, Nbins, Uc)

%Classify recursively using a tree

 

targets = zeros(1, size(features,2));

 

if (size(features,1) == 1),

    %Only one dimension left, so work on it

    for i = 1:Nbins,

        in = indices(find(features(indices) == i));

        if ~isempty(in),

            if isfinite(tree.child(i)),

                targets(in) = tree.child(i);

            else

                %No data was found in the training set for this bin, so choose it randomally

                n           = 1 + floor(rand(1)*length(Uc));

                targets(in) = Uc(n);

            end

        end

    end

    break

end

        

%This is not the last level of the tree, so:

%First, find the dimension we are to work on

dim = tree.split_dim;

dims= find(~ismember(1:size(features,1), dim));

 

%And classify according to it

for i = 1:Nbins,

    in      = indices(find(features(dim, indices) == i));

    targets = targets + use_tree(features(dims, :), in, tree.child(i), Nbins, Uc);

end

    

%END use_tree 

 

function tree = make_tree(features, targets, inc_node, Nbins)

%Build a tree recursively

 

[Ni, L]     = size(features);

Uc          = unique(targets);

 

%When to stop: If the dimension is one or the number of examples is small

if ((Ni == 1) | (inc_node > L)),

    %Compute the children non-recursively

    for i = 1:Nbins,

        tree.split_dim  = 0;

        indices         = find(features == i);

        if ~isempty(indices),

            if (length(unique(targets(indices))) == 1),

                tree.child(i) = targets(indices(1));

            else

                H               = hist(targets(indices), Uc);

                [m, T]          = max(H);

                tree.child(i)   = Uc(T);

            end

        else

            tree.child(i)   = inf;

        end

    end

    break

end

 

%Compute the node's I

for i = 1:Ni,

    Pnode(i) = length(find(targets == Uc(i))) / L;

end

Inode = -sum(Pnode.*log(Pnode)/log(2));

 

%For each dimension, compute the gain ratio impurity

delta_Ib    = zeros(1, Ni);

P           = zeros(length(Uc), Nbins);

for i = 1:Ni,

    for j = 1:length(Uc),

        for k = 1:Nbins,

            indices = find((targets == Uc(j)) & (features(i,:) == k));

            P(j,k)  = length(indices);

        end

    end

    Pk          = sum(P);

    P           = P/L;

    Pk          = Pk/sum(Pk);

    info        = sum(-P.*log(eps+P)/log(2));

    delta_Ib(i) = (Inode-sum(Pk.*info))/-sum(Pk.*log(eps+Pk)/log(2));

end

 

%Find the dimension minimizing delta_Ib 

[m, dim] = max(delta_Ib);

 

%Split along the 'dim' dimension

tree.split_dim = dim;

dims           = find(~ismember(1:Ni, dim));

for i = 1:Nbins,

    indices       = find(features(dim, :) == i);

    tree.child(i) = make_tree(features(dims, indices), targets(indices), inc_node, Nbins);

end

你可能感兴趣的:(MATLAB,其他)