python训练svm分类器_使用经过训练的分类器python-Scikitlearn-SVM进行预测

我需要帮助分类看不见的数据。我有一组数据样本。在ID Comment Category

2017_01 inadequate stock Availability

2017_02 Too many failures Quality

2017_03 no documentation Customer Service

2017_04 good product Satisfied

2017_05 long delivery times Delivery

我用这些数据训练了一个多级文本分类器。

我使用多项式nb和支持向量机对数据进行拟合检验,并选择支持向量机作为最终模型

^{pr2}$

我根据今年的一条评论测试了这个模型print(text_clf_svm.predict(["This is obsolete and being replaced by another product. not very robust and we have had many failures"]))

[“质量”]

问题:我如何将2018年(以下)的未查看数据传递给上面的分类?ID Comment Category

2018_01 This product is obsolete

2018_02 Tech Support takes too long

2018_03 2 out of 3 products failed

2018_04 Delivery to APAC takes too long

你可能感兴趣的:(python训练svm分类器)