- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 【CUDA编程】Dim3
量化投资和人工智能
CUDA昇腾CUDA人工智能深度学习c++云计算
dim3是CUDA编程中用于定义线程块(Block)和网格(Grid)维度的三维向量结构体,本质是包含三个无符号整数成员(x、y、z)的轻量级容器。以下是其核心特性与用法详解:一、核心定义与结构structdim3{unsignedintx;//第一维度(宽度)unsignedinty;//第二维度(高度)unsignedintz;//第三维度(深度)};默认值规则:未显式赋值的维度默认为1。示例
- 【CUDA编程】OptionalCUDAGuard详解
量化投资和人工智能
CUDA大模型人工智能机器学习CUDA云计算pythonc++
OptionalCUDAGuard是PyTorch的CUDA工具库(c10/cuda)中用于安全管理GPU设备上下文的RAII(ResourceAcquisitionIsInitialization)类。其核心作用是在特定代码块中临时切换GPU设备,并在退出作用域时自动恢复原设备状态,尤其适用于设备可能为“未指定”(nullopt)的场景。以下从作用、原理、用法和典型场景详细解析:⚙️一、核心作用
- 【CUDA编程】 C10_CUDA_CHECK 宏详细解析
量化投资和人工智能
CUDACUDA人工智能云计算大模型
以下是对C10_CUDA_CHECK宏的详细解析,结合CUDA错误处理机制和PyTorch框架设计进行说明:一、宏定义结构解析#defineC10_CUDA_CHECK(EXPR)\do{\constcudaError_t__err=EXPR;\c10::cuda::c10_cuda_check_implementation(\static_cast(__err),\__FILE__,\__fun
- 第四篇:Python 高级-高性能计算加速秘籍
程序员勇哥
Python全套教程python开发语言
第四篇:Python高级-高性能计算加速秘籍在当今数据量与计算需求日益增长的环境下,提升Python程序的计算性能显得尤为关键。本篇将深入探讨向量化计算的深度优化以及如何借助CUDA编程与GPU加速来显著提升Python计算效率。一、向量化计算的深度优化(一)利用Numba实现复杂算法的高效向量化Numba简介Numba是一个用于Python的即时编译器(JIT),它能够将Python函数转换为机
- Python中使用CUDA/GPU的方式比较
东北豆子哥
CUDAHPC/MPIpythonCUDA
Python中使用CUDA/GPU的方式比较在Python中利用GPU加速计算有多种方式,以下是主要的几种方法及其比较:1.CUDA原生开发方式:使用NVIDIA提供的CUDAC/C++API开发内核通过PyCUDA或Numba等工具在Python中调用特点:最底层,性能最优开发复杂度高需要熟悉CUDA编程模型示例库:PyCUDANumbaCUDA2.通用GPU计算框架2.1CUDA加速库方式:使
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- 被 CUDA 性能问题困扰?从全局内存到共享内存,并行归约优化全解析!
讳疾忌医丶
动手学习CUDA编程c++CUDA开发语言
你是不是也觉得GPU编程听起来很酷,但一上手就头大?别慌,今天我带你玩转CUDA里一个既基础又硬核的东西——并行归约。啥是归约?简单说,就是把一堆数加起来(或者其他累积操作),但在GPU上,这可不是简单的for循环,而是能让性能起飞的优化手法。作为一个写了好几年CUDA的老司机,我有个独家观点:并行归约是CUDA编程的灵魂,搞懂它,你就摸到了GPU优化的门道。这篇文章不整虚的,我会用大白话带你从最
- 《GPU高性能编程CUDA实战》中文版电子书
翁佳忱
《GPU高性能编程CUDA实战》中文版电子书【下载地址】GPU高性能编程CUDA实战中文版电子书探索GPU高性能编程的奥秘,掌握CUDA实战技巧!本资源提供了《GPU高性能编程CUDA实战》中文电子书,深入解析GPU编程基础与CUDA架构,助您从理论到实践全面提升。无论您是编程新手还是资深开发者,本书都能为您提供清晰的指导与丰富的实战案例。立即下载,开启您的CUDA编程之旅,解锁GPU计算的无限潜
- Cuda Instruction Replay
ZhiqianXia
CUDA技术笔记cuda
在CUDA编程中,指令重放(InstructionReplay)是GPU执行指令时因特定原因导致指令需重复发射或重新执行的现象,通常会影响性能。以下是其关键点:指令重放的原因分支分歧(DivergentBranches)当同一线程束(Warp)中的线程执行不同分支(如if-else)时,GPU需串行化处理每个分支路径。同一指令可能被多次发射(重放),导致执行时间增加。内存访问延迟全局内存访问未命中
- CUDA编程高阶优化:如何突破GPU内存带宽瓶颈的6种实战策略
学术猿之吻
GPU高校人工智能边缘计算人工智能transformer深度学习gpu算力aiAI编程
在GPU计算领域,内存带宽瓶颈是制约性能提升的"隐形杀手"。本文面向具备CUDA基础的研究者,从寄存器、共享内存到TensorCore,系统剖析6项突破性优化策略,助你充分释放GPU算力。一、全局内存访问优化:对齐与合并原则1.1合并访问的本质GPU全局内存以线程束(Warp)为单位执行合并事务。当32个线程访问连续且对齐的128字节内存块时,总线利用率可达100%。以下代码演示如何实现合并
- CUDA编程优化:如何实现矩阵计算的100倍加速
学术猿之吻
GPU高校人工智能矩阵人工智能线性代数深度学习量子计算算法gpu算力
一、突破性能瓶颈的核心路径矩阵计算的百倍加速需要打通"内存带宽→计算密度→指令吞吐"三重关卡。根据NVIDIAAmpere架构白皮书,A100GPU的理论计算峰值(FP32)为19.5TFLOPS,但原生CUDA代码往往只能达到5-8%的理论值。通过系统化优化策略,我们成功将1024×1024矩阵乘法从初始的212ms优化至2.1ms,实现101倍加速(测试平台:NVIDIARTX3090)。二、
- C++开发者的逆袭之路:大部份的高薪岗位都在招 CUDA 人才,你还不行动?
讳疾忌医丶
动手学习CUDA编程c++开发语言
为什么你必须学会CUDA编程?想象一下,你手头有个计算任务,普通CPU跑得慢得像乌龟爬,而GPU却能像火箭一样把性能拉满——这就是高性能计算(HPC)的魅力!在这个数据爆炸的时代,无论是AI训练、科学仿真还是金融建模,HPC都成了不可或缺的利器。而NVIDIA的CUDA平台,正是这场革命的核心,把GPU从画图的“小能手”变成了并行计算的“大杀器”。作为一名C++专家,我可以负责任地说:学会CUDA
- CUDA 编程相关的开源库
byxdaz
CUDAcuda
CUDA编程相关的开源库非常丰富,涵盖了高性能计算、深度学习、图像处理、线性代数、优化算法等多个领域。1.通用GPU计算库CUDAToolkit(NVIDIA官方):包含CUDA运行时库、编译器(nvcc)、调试工具(cuda-gdb、Nsight)、数学库(如cuBLAS、cuFFT)等。CUDAToolkit-FreeToolsandTraining|NVIDIADeveloperThrust
- GPU编程实战指南04:CUDA编程示例,使用共享内存优化性能
anda0109
CUDA并行编程gpu算力AI编程ai
在CUDA编程中,共享内存(SharedMemory)比全局内存(GlobalMemory)效率高的原因主要与CUDA的硬件架构和内存访问特性密切相关。以下是详细分析:1.CUDA内存层次结构CUDA设备(GPU)具有多层次的内存架构,主要包括以下几种:寄存器(Registers):每个线程私有的高速存储单元,速度最快但容量有限。共享内存(SharedMemory):由同一个线程块(Block)中
- gather算子的CUDA编程和算子测试
谨慎付费(看不懂试读博客不要订阅)
高性能计算CUDA
知乎介绍参考添加链接描述完整测试框架参考本人仓库添加链接描述gather算子的onnx定义参考添加链接描述,该算子的主要变换参考下图:这里我们不妨以input=[A,dimsize,D],indices=[B,C],axis=1举例子,此时对应的output形状是[A,B,C,D],并且根据gather算子定义,我们知道output[i,j,k,s]=input[i,indices[j,k],s]
- Python调用CUDA
源代码分析
python开发语言
CUDA常用语法和函数CUDA(ComputeUnifiedDeviceArchitecture)是NVIDIA提供的一个并行计算平台和编程模型,允许开发者使用NVIDIAGPU进行高性能计算。以下是一些CUDA编程中的常用语法和函数:核函数(KernelFunctions):使用__global__修饰符定义,这种函数可以从主机(CPU)调用并在设备(GPU)上并行执行。调用格式:kernel>
- NVIDIA GTC 开发者社区Watch Party资料汇总
扫地的小何尚
NVIDIAGPUlinuxAI算法
NVIDIAGTC开发者社区WatchParty资料汇总以下是所有涉及到的工具中文解读汇总,希望可以帮到各位:1.CUDA编程模型开发者指南和最新功能解析专栏2.NVIDIAWarp:高性能GPU模拟与图形计算的Python框架3.NVIDIAcuDF:GPU加速的数据处理库详解4.NVIDIAcuML:GPU加速的机器学习库详解5.NVIDIAcuFFT详解:从入门到高级应用6.NVIDIAcu
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- cuda编程入门——并行归约(五)
我不会打代码啊啊
cuda编程算法c++gpu算力
CUDA编程入门—并行归约(数组求和为例)在并行计算中,归约(Reduction)是一种将多个数据通过特定操作(如求和、求最大值等)合并为单一结果的并行算法。其核心目标是通过并行化加速大规模数据集的聚合计算。关键概念操作类型:可结合且可交换的操作(如加法、乘法、最大值、最小值、逻辑与/或等)适合并行归约。若操作不可结合(如减法或除法),需特殊处理或无法直接并行化。并行实现方式:树形结构归约:将数据
- cuda编程入门——并行性与异构性概念
我不会打代码啊啊
cuda编程gpu算力c++
CUDA编程入门一基于cuda的异构并行计算并行性一、并行性的概念与分类概念并行性旨在通过同时处理多个任务或数据元素来提高计算速度和效率。它可以在不同的层次上实现,包括指令级并行、数据级并行和任务级并行等。分类指令级并行(Instruction-LevelParallelism,ILP):在处理器的指令执行层面,通过硬件技术(如流水线、超标量技术等)让多条指令在不同阶段同时执行,从而提高处理器的指
- CUDA检测失败的解决方案
HackDashX
Python
CUDA检测失败的解决方案在使用Python进行CUDA编程时,有时候会遇到"CUDAdetectionfailed"的错误信息。这个错误通常表示CUDA驱动程序无法正确地检测到CUDA设备。在本文中,我将为您提供一些解决这个问题的方法。以下是一些可能的原因和相应的解决方案:CUDA驱动程序未正确安装:首先,请确保您已正确安装了与您的CUDA版本相匹配的CUDA驱动程序。您可以从NVIDIA官方网
- CUDA环境配置
波小澜
CUDAcudaubuntu环境配置
本文介绍Ubuntu14.04下CUDA环境的安装过程标签高性能计算(HPC)并行化加速学习CUDA最好的去处还是NVIDIA官网,上面许多文档写的都相当不错,比如CUDA编程指南、如何使用cuRand生成随机数等。环境配置博主主要在Linux下进行CUDA程序的开发,包括Ubuntu14.04、CentOS6等以在Ubuntu下安装CUDA为例:首先,在命令行中执行nvidia-smi指令,查看
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。