从源码的角度理解Android的消息处理机制

关于Android的消息处理机制,我们避免不了会提到Handler,这也是面试常谈的一个知识点,最近在整理相关资料,正好写篇博客记录下。

什么是Handler?

Handler是Andorid给我们提供的一套UI更新机制,同时它也是一套消息处理机制。
既然提到了消息处理机制,那么我们势必会提到Handler、Looper、MessageQueue、Message,那么这几个对象的存在有什么意义呢?

Handler、Looper、MessageQueue、Message之间的关系?

这里先简单概述下它们的工作的流程,首先是创建Message信息,然后通过Handler发送到MessageQueue消息队列,然后再通过Looper取出消息再交给Handler进行处理。

从源码的角度理解Android的消息处理机制_第1张图片
Android消息处理机制流程图

为了帮助大家理解,大家可以这样来想:
Handler是工人,Message是产品,MessageQueue是传送产品的传送带,Looper是传送带的助力器,整套流程下来就是,工人(Handler)把产品(Message)一个个的放入产品传送带(MessageQueue),然后随着传送带助力器(Looper)的推进,再把产品一个个的取出处理。

想必这些问题你也曾遇到过吧?

记得刚学Android那会,知道耗时操作需要在子线程中完成,所以就创建了一个子线程来执行网络访问,当访问成功获取数据更新UI的时候遇到:

Only the original thread that created a view hierarchy can touch its views
不能在非UI线程中更新视图

后来了解到可以通过Handler把消息从子线程取出来并发送给主线程处理,就肆无忌惮的使用了,但在使用的过程中发现,我们在主线程创建Handler的时候不会有问题,但如果在子线程中创建Handler便会出现以下异常:

Can't create handler inside thread that has not called Looper.prepare()
不能在没有调用Looper.prepare()方法的线程中创建Handler

那时候并没有想太多,直接网上搜了下解决异常的方法,就继续往下写了,今天我们从源码的角度来详细的了解下为什么会有这些异常。

从源码的角度带你一步步分析

首先我们来看下创建Handler的过程,这是Handler的构造方法:

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

我们只需要关注下面这几行代码:

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }

在创建Handler的过程中,我们需要一个mLooper对象,如果它为空则会抛出上面所提到的异常

Can't create handler inside thread that has not called Looper.prepare()

那么这个Looper.myLooper();做了什么操作呢?我们进入方法中看个究竟:

    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

它通过sThreadLocal变量的get方法从本地线程变量中获取Looper对象,那么既然有getter方法,那一定也对应着setter方法,我们来看一下prepare()方法:

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

原来在Looper类中的prepare方法中,我们对sThreadLocal变量设置了一个Looper对象。

到这里我们可以总结出Handler的创建需要一个Looper对象,而这个Looper对象是在调用Looper.prepare()方法的时候创建的

这也解释了为什么在子线程中,我们不能直接去创建Handler对象,而需要调用Looper.prepare()方法,那么这里又引出一个问题,在主线程创建Handler的时候,并没有执行Looper.prepare()方法,为什么不会报错呢?这里我们依旧通过源码来回答问题,我们找到ActivityThread类,在类里我们找到main()方法:

    public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("");

        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

ActivityThread代表Application的主线程,Android的入口方法就在ActivityThread类中的main方法,在这个方法里我们可以看到这么一行代码:Looper.prepareMainLooper();我们进入方法看一下:

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

在方法里我们可以看到prepare(false);(上文我们已经提到,在这个方法里会创建一个Looper对象,并设置到sThreadLocal变量中)往下再通过 myLooper()取出。

所以这里我们可以知道,并不是主线程创建Handler不需要调用Looper.prepare(),而是系统内部在创建主线程的时候就帮我们调用了。

现在我们继续往下读Handler的构造方法,我们会发现这么一行代码mQueue = mLooper.mQueue;,说明我们在创建Looper消息线程的时候,它内部会帮我们创建一个消息队列,而这个消息队列是用来存放Message对象的,既然有消息队列,有消息,那么肯定需要有入队和出队的操作,我们很自然的就会想到Handler是如何发送消息和处理消息的,Handler发送消息大致有两种,一种是sendMessage(Message msg),一种是post(Runnable r),追踪源码我们可以发现,不管是那种发送消息方式,它们最终调用的都是sendMessageAtTime方法,我们来看下这个方法源码:

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

我们这里发现了enqueueMessage()方法,从字面上的意思可以知道这是一个消息入列的操作:

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
   boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这里我们可以看到msg.target = this;,当消息入列的时候,把自身(Handler)赋值给了target,然后以时间的顺序把这些需要处理的消息依次入列。

然后我们再来看下消息出列操作,这里我们回头来看一下Looper类的loop()方法:

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            msg.recycleUnchecked();
        }
    }

在这里我们可以发现,消息线程Looper是个死循环,我们通过消息队列next方法取出消息,当消息为空的时候,消息线程会成阻塞状态,等待消息的到来,当消息不为空的时候,会通过Looper发送对应消息给Handler的dispatchMessage()方法进行处理,这里的msg.target刚好就是上文提到的Handler(this),所以我们去Handler类下找dispatchMessage方法:

   public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

在这里我们可以看到,Handler在处理消息的时候,如果callback(Handler构造方法里的mCallBack)不为空,则在callback的handlerMessage处理消息,否则就在直接在Handler的handleMessage处理。

所以一个标准的异步消息处理线程应该是这样的:

class LooperThread extends Thread {  
      public Handler mHandler;  
      public void run() {  
          Looper.prepare();  
          mHandler = new Handler() {  
              public void handleMessage(Message msg) {  
                  // process incoming messages here  
              }  
          };  
          Looper.loop();  
      }  
  } 

最后补充几个在子线程中更新UI的方法:

1、Handler的post()方法

  public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

2、View的post()方法

    public boolean post(Runnable action) {
        final AttachInfo attachInfo = mAttachInfo;
        if (attachInfo != null) {
            return attachInfo.mHandler.post(action);
        }

        // Postpone the runnable until we know on which thread it needs to run.
        // Assume that the runnable will be successfully placed after attach.
        getRunQueue().post(action);
        return true;
    }

3、Activity的runOnUiThread()方法

   public final void runOnUiThread(Runnable action) {
        if (Thread.currentThread() != mUiThread) {
            mHandler.post(action);
        } else {
            action.run();
        }
    }

经过上面的源码我们可以发现,其实本质上都是调用了Handler.post()方法。

Handler使用不当导致的内存泄露?

记得早期的android教材中(包括教科书),可能更多是想让读者先学会使用Handler,而没有过多的去考虑内存泄露这方面的事情,最常见的就是Handler以非静态内部类的方式存在,或者是持有外部Activity的强引用等,如:

    private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            tvUserName.setText("");
        }
    };

以上这些操作都很可能会导致内存泄露,关于这方面的问题,改天专门写一篇文章来说吧,就不再这里过多阐述了。

好了,到这里,关于Android的消息处理机制大致讲完了。

你可能感兴趣的:(从源码的角度理解Android的消息处理机制)