全网最全python爬虫系统进阶学习(原代码整理)

5.2(第二天)

第一章 爬虫介绍

1.认识爬虫

第二章:requests实战(基础爬虫)

1.豆瓣电影爬取
2.肯德基餐厅查询
3.破解百度翻译
4.搜狗首页
5.网页采集器
6.药监总局相关数据爬取

第三章:爬虫数据分析(bs4,xpath,正则表达式)

1.bs4解析基础
2.bs4案例
3.xpath解析基础
4.xpath解析案例-4k图片解析爬取
5.xpath解析案例-58二手房
6.xpath解析案例-爬取站长素材中免费简历模板
7.xpath解析案例-全国城市名称爬取
8.正则解析
9.正则解析-分页爬取
10.爬取图片

第四章:自动识别验证码

1.古诗文网验证码识别
fateadm_api.py(识别需要的配置,建议放在同一文件夹下)
调用api接口在这里插入图片描述

第五章:request模块高级(模拟登录)

1.代理操作
2.模拟登陆人人网
3.模拟登陆人人网
全网最全python爬虫系统进阶学习(原代码整理)_第1张图片

第六章:高性能异步爬虫(线程池,协程)

1.aiohttp实现多任务异步爬虫
2.flask服务
3.多任务协程
4.多任务异步爬虫
5.示例
6.同步爬虫
7.线程池基本使用
8.线程池在爬虫案例中的应用
9.协程

第七章:动态加载数据处理(selenium模块应用,模拟登录12306)

1.selenium基础用法
2.selenium其他自动操作
3.12306登录示例代码
4.动作链与iframe的处理
5.谷歌无头浏览器+反检测
6.基于selenium实现1236模拟登录
7.模拟登录qq空间

第八章:scrapy框架

1.各种项目实战,scrapy各种配置修改
全网最全python爬虫系统进阶学习(原代码整理)_第2张图片

2.bossPro示例
3.bossPro示例
4.数据库示例

第一章 爬虫介绍

第0关 认识爬虫
1、初始爬虫
爬虫,从本质上来说,就是利用程序在网上拿到对我们有价值的数据。
2、明晰路径
2-1、浏览器工作原理

(1)解析数据:当服务器把数据响应给浏览器之后,浏览器并不会直接把数据丢给我们。因为这些数据是用计算机的语言写的,浏览器还要把这些数据翻译成我们能看得懂的内容;
(2)提取数据:我们就可以在拿到的数据中,挑选出对我们有用的数据;
(3)存储数据:将挑选出来的有用数据保存在某一文件/数据库中。
2-2、爬虫工作原理

(1)获取数据:爬虫程序会根据我们提供的网址,向服务器发起请求,然后返回数据;
(2)解析数据:爬虫程序会把服务器返回的数据解析成我们能读懂的格式;
(3)提取数据:爬虫程序再从中提取出我们需要的数据;
(4)储存数据:爬虫程序把这些有用的数据保存起来,便于你日后的使用和分析。
————————————————
版权声明:本文为CSDN博主「yk 坤帝」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_45803923/article/details/116133325

第二章:requests实战(基础爬虫)

1.豆瓣电影爬取

import requests
import json
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = "https://movie.douban.com/j/chart/top_list"

params = {
     
    'type': '24',
    'interval_id': '100:90',
    'action': '',
    'start': '0',#从第几部电影开始取
    'limit': '20'#一次取出的电影的个数
}
response = requests.get(url,params = params,headers = headers)
list_data = response.json()
fp = open('douban.json','w',encoding= 'utf-8')
json.dump(list_data,fp = fp,ensure_ascii= False)

print('over!!!!')

2.肯德基餐厅查询

import requests

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = 'http://www.kfc.com.cn/kfccda/ashx/GetStoreList.ashx?op=keyword'
word = input('请输入一个地址:')
params = {
     
    'cname': '',
    'pid': '',
    'keyword': word,
    'pageIndex': '1',
    'pageSize': '10'
}
response = requests.post(url,params = params ,headers = headers)
page_text = response.text
fileName = word + '.txt'
with open(fileName,'w',encoding= 'utf-8') as f:
    f.write(page_text)

3.破解百度翻译

import requests
import json
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
post_url = 'https://fanyi.baidu.com/sug'
word = input('enter a word:')
data = {
     
    'kw':word
}
response = requests.post(url = post_url,data = data,headers = headers)
dic_obj = response.json()
fileName = word + '.json'
fp = open(fileName,'w',encoding= 'utf-8')

#ensure_ascii = False,中文不能用ascii代码
json.dump(dic_obj,fp = fp,ensure_ascii = False)
print('over!')


4.搜狗首页

import requests

url = 'https://www.sogou.com/?pid=sogou-site-d5da28d4865fb927'
response = requests.get(url)
page_text = response.text

print(page_text)
with open('./sougou.html','w',encoding= 'utf-8') as fp:
    fp.write(page_text)
print('爬取数据结束!!!')

5.网页采集器

import requests
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'https://www.sogou.com/sogou'
kw = input('enter a word:')
param = {
     
    'query':kw
}
response = requests.get(url,params = param,headers = headers)

page_text = response.text
fileName = kw +'.html'

with open(fileName,'w',encoding= 'utf-8') as fp:
    fp.write(page_text)

print(fileName,'保存成功!!!')

6.药监总局相关数据爬取

import requests
import json
url = "http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsList"
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4385.0 Safari/537.36'
}
for page in range(1,6):
    page = str(page)
    data = {
     
        'on': 'true',
        'page': page,
        'pageSize': '15',
        'productName':'',
        'conditionType': '1',
        'applyname': '',
        'applysn':''
    }
    json_ids = requests.post(url,data = data,headers = headers).json()
    id_list = []
    for dic in json_ids['list']:
        id_list.append(dic['ID'])
    #print(id_list)

post_url = 'http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsById'
all_data_list = []
for id in id_list:
    data = {
     
        'id':id
    }
    datail_json = requests.post(url = post_url,data = data,headers = headers).json()
    #print(datail_json,'---------------------over')
    all_data_list.append(datail_json)
    fp = open('allData.json','w',encoding='utf-8')
    json.dump(all_data_list,fp = fp,ensure_ascii= False)
print('over!!!')

第三章:爬虫数据分析(bs4,xpath,正则表达式)

1.bs4解析基础

from bs4 import BeautifulSoup

fp = open('第三章 数据分析/text.html','r',encoding='utf-8')
soup = BeautifulSoup(fp,'lxml')
#print(soup)
#print(soup.a)
#print(soup.div)
#print(soup.find('div'))
#print(soup.find('div',class_="song"))
#print(soup.find_all('a'))
#print(soup.select('.tang'))
#print(soup.select('.tang > ul > li >a')[0].text)
#print(soup.find('div',class_="song").text)
#print(soup.find('div',class_="song").string)
print(soup.select('.tang > ul > li >a')[0]['href'])

2.bs4案例

from bs4 import BeautifulSoup
import requests

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = "http://sanguo.5000yan.com/"

page_text = requests.get(url ,headers = headers).content
#print(page_text)

soup = BeautifulSoup(page_text,'lxml')

li_list = soup.select('.list > ul > li')

fp = open('./sanguo.txt','w',encoding='utf-8')
for li in li_list:
    title = li.a.string
    #print(title)
    detail_url = 'http://sanguo.5000yan.com/'+li.a['href']
    print(detail_url)
    detail_page_text = requests.get(detail_url,headers = headers).content
    detail_soup = BeautifulSoup(detail_page_text,'lxml')
    div_tag = detail_soup.find('div',class_="grap")
    content = div_tag.text
    fp.write(title+":"+content+'\n')
    print(title,'爬取成功!!!')

3.xpath解析基础

from lxml import etree

tree = etree.parse('第三章 数据分析/text.html')
# r = tree.xpath('/html/head/title')
# print(r)
# r = tree.xpath('/html/body/div')
# print(r)
# r = tree.xpath('/html//div')
# print(r)
# r = tree.xpath('//div')
# print(r)
# r = tree.xpath('//div[@class="song"]')
# print(r)
# r = tree.xpath('//div[@class="song"]/P[3]')
# print(r)
# r = tree.xpath('//div[@class="tang"]//li[5]/a/text()')
# print(r)
# r = tree.xpath('//li[7]/i/text()')
# print(r)
# r = tree.xpath('//li[7]//text()')
# print(r)
# r = tree.xpath('//div[@class="tang"]//text()')
# print(r)
# r = tree.xpath('//div[@class="song"]/img/@src')
# print(r)



4.xpath解析案例-4k图片解析爬取

import requests
from lxml import etree
import os

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'http://pic.netbian.com/4kmeinv/'
response = requests.get(url,headers = headers)
#response.encoding=response.apparent_encoding
#response.encoding = 'utf-8'
page_text = response.text
tree = etree.HTML(page_text)

li_list = tree.xpath('//div[@class="slist"]/ul/li')

# if not os.path.exists('./picLibs'):
#     os.mkdir('./picLibs')
for li in li_list:
    img_src = 'http://pic.netbian.com/'+li.xpath('./a/img/@src')[0]
    img_name = li.xpath('./a/img/@alt')[0]+'.jpg'
    img_name = img_name.encode('iso-8859-1').decode('gbk')
    # print(img_name,img_src)
    # print(type(img_name))

    img_data = requests.get(url = img_src,headers = headers).content
    img_path ='picLibs/'+img_name
    #print(img_path)

    with open(img_path,'wb') as fp:

        fp.write(img_data)
        print(img_name,"下载成功")

5.xpath解析案例-58二手房

import requests
from lxml import etree

url = 'https://bj.58.com/ershoufang/p2/'
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

page_text = requests.get(url=url,headers = headers).text

tree = etree.HTML(page_text)

li_list = tree.xpath('//section[@class="list-left"]/section[2]/div')

fp = open('58.txt','w',encoding='utf-8')
for li in li_list:
    title = li.xpath('./a/div[2]/div/div/h3/text()')[0]
    print(title)
    fp.write(title+'\n')
    

6.xpath解析案例-爬取站长素材中免费简历模板

import requests
from lxml import etree
import os

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'https://www.aqistudy.cn/historydata/'
page_text = requests.get(url,headers = headers).text

7.xpath解析案例-全国城市名称爬取

import requests
from lxml import etree
import os

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'https://www.aqistudy.cn/historydata/'
page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
# holt_li_list = tree.xpath('//div[@class="bottom"]/ul/li')

# all_city_name = []
# for li in holt_li_list:
#     host_city_name = li.xpath('./a/text()')[0]
#     all_city_name.append(host_city_name)

# city_name_list = tree.xpath('//div[@class="bottom"]/ul/div[2]/li')
# for li in city_name_list:
#     city_name = li.xpath('./a/text()')[0]
#     all_city_name.append(city_name)

# print(all_city_name,len(all_city_name))

#holt_li_list = tree.xpath('//div[@class="bottom"]/ul//li')
holt_li_list = tree.xpath('//div[@class="bottom"]/ul/li | //div[@class="bottom"]/ul/div[2]/li')
all_city_name = []
for li in holt_li_list:
    host_city_name = li.xpath('./a/text()')[0]
    all_city_name.append(host_city_name)
    print(all_city_name,len(all_city_name))


8.正则解析

import requests
import re
import os

if not os.path.exists('./qiutuLibs'):
    os.mkdir('./qiutuLibs')

url = 'https://www.qiushibaike.com/imgrank/'
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4385.0 Safari/537.36'
}

page_text = requests.get(url,headers = headers).text


ex = '
.*?' img_src_list = re.findall(ex,page_text,re.S) print(img_src_list) for src in img_src_list: src = 'https:' + src img_data = requests.get(url = src,headers = headers).content img_name = src.split('/')[-1] imgPath = './qiutuLibs/'+img_name with open(imgPath,'wb') as fp: fp.write(img_data) print(img_name,"下载完成!!!!!")

9.正则解析-分页爬取

import requests
import re
import os

if not os.path.exists('./qiutuLibs'):
    os.mkdir('./qiutuLibs')

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4385.0 Safari/537.36'
}

url = 'https://www.qiushibaike.com/imgrank/page/%d/'

for pageNum in range(1,3):
    new_url = format(url%pageNum)

    page_text = requests.get(new_url,headers = headers).text


    ex = '
.*?' img_src_list = re.findall(ex,page_text,re.S) print(img_src_list) for src in img_src_list: src = 'https:' + src img_data = requests.get(url = src,headers = headers).content img_name = src.split('/')[-1] imgPath = './qiutuLibs/'+img_name with open(imgPath,'wb') as fp: fp.write(img_data) print(img_name,"下载完成!!!!!")

10.爬取图片

import requests

url = 'https://pic.qiushibaike.com/system/pictures/12404/124047919/medium/R7Y2UOCDRBXF2MIQ.jpg'
img_data = requests.get(url).content

with open('qiutu.jpg','wb') as fp:
    fp.write(img_data)

第四章:自动识别验证码

1.古诗文网验证码识别

开发者账号密码可以申请

import requests
from lxml import etree
from fateadm_api import FateadmApi

def TestFunc(imgPath,codyType):
    pd_id           = "xxxxxx"     #用户中心页可以查询到pd信息
    pd_key          = "xxxxxxxx"
    app_id          = "xxxxxxx"     #开发者分成用的账号,在开发者中心可以查询到
    app_key         = "xxxxxxx"
    #识别类型,
    #具体类型可以查看官方网站的价格页选择具体的类型,不清楚类型的,可以咨询客服
    pred_type       = codyType
    api             = FateadmApi(app_id, app_key, pd_id, pd_key)
    # 查询余额
    balance 		= api.QueryBalcExtend()   # 直接返余额
    # api.QueryBalc()

    # 通过文件形式识别:
    file_name       = imgPath
    # 多网站类型时,需要增加src_url参数,具体请参考api文档: http://docs.fateadm.com/web/#/1?page_id=6
    result =  api.PredictFromFileExtend(pred_type,file_name)   # 直接返回识别结果
    #rsp             = api.PredictFromFile(pred_type, file_name)  # 返回详细识别结果

    '''
    # 如果不是通过文件识别,则调用Predict接口:
    # result 			= api.PredictExtend(pred_type,data)   	# 直接返回识别结果
    rsp             = api.Predict(pred_type,data)				# 返回详细的识别结果
    '''

    # just_flag    = False
    # if just_flag :
    #     if rsp.ret_code == 0:
    #         #识别的结果如果与预期不符,可以调用这个接口将预期不符的订单退款
    #         # 退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    #         api.Justice( rsp.request_id)

    #card_id         = "123"
    #card_key        = "123"
    #充值
    #api.Charge(card_id, card_key)
    #LOG("print in testfunc")
    return result

# if __name__ == "__main__":
#     TestFunc()


headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = 'https://so.gushiwen.cn/user/login.aspx?from=http://so.gushiwen.cn/user/collect.aspx'

page_text = requests.get(url,headers = headers).text
tree = etree.HTML(page_text)

code_img_src = 'https://so.gushiwen.cn' + tree.xpath('//*[@id="imgCode"]/@src')[0]
img_data = requests.get(code_img_src,headers = headers).content

with open('./code.jpg','wb') as fp:
    fp.write(img_data)

code_text = TestFunc('code.jpg',30400)
print('识别结果为:' + code_text)

code_text = TestFunc('code.jpg',30400)
print('识别结果为:' + code_text)

fateadm_api.py(识别需要的配置,建议放在同一文件夹下)
调用api接口

# coding=utf-8
import os,sys
import hashlib
import time
import json
import requests

FATEA_PRED_URL  = "http://pred.fateadm.com"

def LOG(log):
    # 不需要测试时,注释掉日志就可以了
    print(log)
    log = None

class TmpObj():
    def __init__(self):
        self.value  = None

class Rsp():
    def __init__(self):
        self.ret_code   = -1
        self.cust_val   = 0.0
        self.err_msg    = "succ"
        self.pred_rsp   = TmpObj()

    def ParseJsonRsp(self, rsp_data):
        if rsp_data is None:
            self.err_msg     = "http request failed, get rsp Nil data"
            return
        jrsp                = json.loads( rsp_data)
        self.ret_code       = int(jrsp["RetCode"])
        self.err_msg        = jrsp["ErrMsg"]
        self.request_id     = jrsp["RequestId"]
        if self.ret_code == 0:
            rslt_data   = jrsp["RspData"]
            if rslt_data is not None and rslt_data != "":
                jrsp_ext    = json.loads( rslt_data)
                if "cust_val" in jrsp_ext:
                    data        = jrsp_ext["cust_val"]
                    self.cust_val   = float(data)
                if "result" in jrsp_ext:
                    data        = jrsp_ext["result"]
                    self.pred_rsp.value     = data

def CalcSign(pd_id, passwd, timestamp):
    md5     = hashlib.md5()
    md5.update((timestamp + passwd).encode())
    csign   = md5.hexdigest()

    md5     = hashlib.md5()
    md5.update((pd_id + timestamp + csign).encode())
    csign   = md5.hexdigest()
    return csign

def CalcCardSign(cardid, cardkey, timestamp, passwd):
    md5     = hashlib.md5()
    md5.update(passwd + timestamp + cardid + cardkey)
    return md5.hexdigest()

def HttpRequest(url, body_data, img_data=""):
    rsp         = Rsp()
    post_data   = body_data
    files       = {
     
        'img_data':('img_data',img_data)
    }
    header      = {
     
            'User-Agent': 'Mozilla/5.0',
            }
    rsp_data    = requests.post(url, post_data,files=files ,headers=header)
    rsp.ParseJsonRsp( rsp_data.text)
    return rsp

class FateadmApi():
    # API接口调用类
    # 参数(appID,appKey,pdID,pdKey)
    def __init__(self, app_id, app_key, pd_id, pd_key):
        self.app_id     = app_id
        if app_id is None:
            self.app_id = ""
        self.app_key    = app_key
        self.pd_id      = pd_id
        self.pd_key     = pd_key
        self.host       = FATEA_PRED_URL

    def SetHost(self, url):
        self.host       = url

    #
    # 查询余额
    # 参数:无
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.cust_val:用户余额
    #   rsp.err_msg:异常时返回异常详情
    #
    def QueryBalc(self):
        tm      = str( int(time.time()))
        sign    = CalcSign( self.pd_id, self.pd_key, tm)
        param   = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign
                }
        url     = self.host + "/api/custval"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("query succ ret: {} cust_val: {} rsp: {} pred: {}".format( rsp.ret_code, rsp.cust_val, rsp.err_msg, rsp.pred_rsp.value))
        else:
            LOG("query failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 查询网络延迟
    # 参数:pred_type:识别类型
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg: 异常时返回异常详情
    #
    def QueryTTS(self, pred_type):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                "predict_type":pred_type,
                }
        if self.app_id != "":
            #
            asign       = CalcSign(self.app_id, self.app_key, tm)
            param["appid"]     = self.app_id
            param["asign"]      = asign
        url     = self.host + "/api/qcrtt"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("query rtt succ ret: {} request_id: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.err_msg))
        else:
            LOG("predict failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 识别验证码
    # 参数:pred_type:识别类型  img_data:图片的数据
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.request_id:唯一订单号
    #   rsp.pred_rsp.value:识别结果
    #   rsp.err_msg:异常时返回异常详情
    #
    def Predict(self, pred_type, img_data, head_info = ""):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp": tm,
                "sign": sign,
                "predict_type": pred_type,
                "up_type": "mt"
                }
        if head_info is not None or head_info != "":
            param["head_info"] = head_info
        if self.app_id != "":
            #
            asign       = CalcSign(self.app_id, self.app_key, tm)
            param["appid"]     = self.app_id
            param["asign"]      = asign
        url     = self.host + "/api/capreg"
        files = img_data
        rsp     = HttpRequest(url, param, files)
        if rsp.ret_code == 0:
            LOG("predict succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("predict failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg))
            if rsp.ret_code == 4003:
                #lack of money
                LOG("cust_val <= 0 lack of money, please charge immediately")
        return rsp

    #
    # 从文件进行验证码识别
    # 参数:pred_type;识别类型  file_name:文件名
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.request_id:唯一订单号
    #   rsp.pred_rsp.value:识别结果
    #   rsp.err_msg:异常时返回异常详情
    #
    def PredictFromFile( self, pred_type, file_name, head_info = ""):
        with open(file_name, "rb") as f:
            data = f.read()
        return self.Predict(pred_type,data,head_info=head_info)

    #
    # 识别失败,进行退款请求
    # 参数:request_id:需要退款的订单号
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg:异常时返回异常详情
    #
    # 注意:
    #    Predict识别接口,仅在ret_code == 0时才会进行扣款,才需要进行退款请求,否则无需进行退款操作
    # 注意2:
    #   退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    #
    def Justice(self, request_id):
        if request_id == "":
            #
            return
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                "request_id":request_id
                }
        url     = self.host + "/api/capjust"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("justice succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("justice failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 充值接口
    # 参数:cardid:充值卡号  cardkey:充值卡签名串
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg:异常时返回异常详情
    #
    def Charge(self, cardid, cardkey):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        csign       = CalcCardSign(cardid, cardkey, tm, self.pd_key)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                'cardid':cardid,
                'csign':csign
                }
        url     = self.host + "/api/charge"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("charge succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("charge failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    ##
    # 充值,只返回是否成功
    # 参数:cardid:充值卡号  cardkey:充值卡签名串
    # 返回值: 充值成功时返回0
    ##
    def ExtendCharge(self, cardid, cardkey):
        return self.Charge(cardid,cardkey).ret_code

    ##
    # 调用退款,只返回是否成功
    # 参数: request_id:需要退款的订单号
    # 返回值: 退款成功时返回0
    #
    # 注意:
    #    Predict识别接口,仅在ret_code == 0时才会进行扣款,才需要进行退款请求,否则无需进行退款操作
    # 注意2:
    #   退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    ##
    def JusticeExtend(self, request_id):
        return self.Justice(request_id).ret_code

    ##
    # 查询余额,只返回余额
    # 参数:无
    # 返回值:rsp.cust_val:余额
    ##
    def QueryBalcExtend(self):
        rsp = self.QueryBalc()
        return rsp.cust_val

    ##
    # 从文件识别验证码,只返回识别结果
    # 参数:pred_type;识别类型  file_name:文件名
    # 返回值: rsp.pred_rsp.value:识别的结果
    ##
    def PredictFromFileExtend( self, pred_type, file_name, head_info = ""):
        rsp = self.PredictFromFile(pred_type,file_name,head_info)
        return rsp.pred_rsp.value

    ##
    # 识别接口,只返回识别结果
    # 参数:pred_type:识别类型  img_data:图片的数据
    # 返回值: rsp.pred_rsp.value:识别的结果
    ##
    def PredictExtend(self,pred_type, img_data, head_info = ""):
        rsp = self.Predict(pred_type,img_data,head_info)
        return rsp.pred_rsp.value



def TestFunc():
    pd_id           = "128292"     #用户中心页可以查询到pd信息
    pd_key          = "bASHdc/12ISJOX7pV3qhPr2ntQ6QcEkV"
    app_id          = "100001"     #开发者分成用的账号,在开发者中心可以查询到
    app_key         = "123456"
    #识别类型,
    #具体类型可以查看官方网站的价格页选择具体的类型,不清楚类型的,可以咨询客服
    pred_type       = "30400"
    api             = FateadmApi(app_id, app_key, pd_id, pd_key)
    # 查询余额
    balance 		= api.QueryBalcExtend()   # 直接返余额
    # api.QueryBalc()

    # 通过文件形式识别:
    file_name       = 'img.gif'
    # 多网站类型时,需要增加src_url参数,具体请参考api文档: http://docs.fateadm.com/web/#/1?page_id=6
    # result =  api.PredictFromFileExtend(pred_type,file_name)   # 直接返回识别结果
    rsp             = api.PredictFromFile(pred_type, file_name)  # 返回详细识别结果

    '''
    # 如果不是通过文件识别,则调用Predict接口:
    # result 			= api.PredictExtend(pred_type,data)   	# 直接返回识别结果
    rsp             = api.Predict(pred_type,data)				# 返回详细的识别结果
    '''

    just_flag    = False
    if just_flag :
        if rsp.ret_code == 0:
            #识别的结果如果与预期不符,可以调用这个接口将预期不符的订单退款
            # 退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
            api.Justice( rsp.request_id)

    #card_id         = "123"
    #card_key        = "123"
    #充值
    #api.Charge(card_id, card_key)
    LOG("print in testfunc")

if __name__ == "__main__":
    TestFunc()



第五章:request模块高级(模拟登录)

1.代理操作

import requests


headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = 'https://www.sogou.com/sie?query=ip'

page_text = requests.get(url,headers = headers,proxies = {
     "https":"183.166.103.86:9999"}).text

with open('ip.html','w',encoding='utf-8') as fp:

    fp.write(page_text)

2.模拟登陆人人网

import requests
from lxml import etree
from fateadm_api import FateadmApi


def TestFunc(imgPath,codyType):
    pd_id           = "xxxxx"     #用户中心页可以查询到pd信息
    pd_key          = "xxxxxxxxxxxxxxxxxx"
    app_id          = "xxxxxxxx"     #开发者分成用的账号,在开发者中心可以查询到
    app_key         = "xxxxxx"
    #识别类型,
    #具体类型可以查看官方网站的价格页选择具体的类型,不清楚类型的,可以咨询客服
    pred_type       = codyType
    api             = FateadmApi(app_id, app_key, pd_id, pd_key)
    # 查询余额
    balance 		= api.QueryBalcExtend()   # 直接返余额
    # api.QueryBalc()

    # 通过文件形式识别:
    file_name       = imgPath
    # 多网站类型时,需要增加src_url参数,具体请参考api文档: http://docs.fateadm.com/web/#/1?page_id=6
    result =  api.PredictFromFileExtend(pred_type,file_name)   # 直接返回识别结果
    #rsp             = api.PredictFromFile(pred_type, file_name)  # 返回详细识别结果

    '''
    # 如果不是通过文件识别,则调用Predict接口:
    # result 			= api.PredictExtend(pred_type,data)   	# 直接返回识别结果
    rsp             = api.Predict(pred_type,data)				# 返回详细的识别结果
    '''

    # just_flag    = False
    # if just_flag :
    #     if rsp.ret_code == 0:
    #         #识别的结果如果与预期不符,可以调用这个接口将预期不符的订单退款
    #         # 退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    #         api.Justice( rsp.request_id)

    #card_id         = "123"
    #card_key        = "123"
    #充值
    #api.Charge(card_id, card_key)
    #LOG("print in testfunc")
    return result

# if __name__ == "__main__":
#     TestFunc()



headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = 'http://www.renren.com/'
page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
code_img_src = tree.xpath('//*[@id="verifyPic_login"]/@src')[0]

code_img_data = requests.get(code_img_src,headers = headers).content

with open('./code.jpg','wb') as fp:
    fp.write(code_img_data)

result = TestFunc('code.jpg',30600)
print('识别结果为:' + result)

login_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=2021121720536'
data = {
     
    'email':'xxxxxxxx',
    'icode': result,
    'origURL': 'http://www.renren.com/home',
    'domain': 'renren.com',
    'key_id': '1',
    'captcha_type':' web_login',
    'password': '47e27dd5ef32b31041ebf56ec85a9b1e4233875e36396241c88245b188c56cdb',
    'rkey': 'c655ef0c57a72755f1240d6c0efac67d',
    'f': ''
}

response = requests.post(login_url,headers = headers, data = data)
print(response.status_code)


with open('renren.html','w',encoding= 'utf-8') as fp:
    fp.write(response.text)

fateadm_api.py

# coding=utf-8
import os,sys
import hashlib
import time
import json
import requests

FATEA_PRED_URL  = "http://pred.fateadm.com"

def LOG(log):
    # 不需要测试时,注释掉日志就可以了
    print(log)
    log = None

class TmpObj():
    def __init__(self):
        self.value  = None

class Rsp():
    def __init__(self):
        self.ret_code   = -1
        self.cust_val   = 0.0
        self.err_msg    = "succ"
        self.pred_rsp   = TmpObj()

    def ParseJsonRsp(self, rsp_data):
        if rsp_data is None:
            self.err_msg     = "http request failed, get rsp Nil data"
            return
        jrsp                = json.loads( rsp_data)
        self.ret_code       = int(jrsp["RetCode"])
        self.err_msg        = jrsp["ErrMsg"]
        self.request_id     = jrsp["RequestId"]
        if self.ret_code == 0:
            rslt_data   = jrsp["RspData"]
            if rslt_data is not None and rslt_data != "":
                jrsp_ext    = json.loads( rslt_data)
                if "cust_val" in jrsp_ext:
                    data        = jrsp_ext["cust_val"]
                    self.cust_val   = float(data)
                if "result" in jrsp_ext:
                    data        = jrsp_ext["result"]
                    self.pred_rsp.value     = data

def CalcSign(pd_id, passwd, timestamp):
    md5     = hashlib.md5()
    md5.update((timestamp + passwd).encode())
    csign   = md5.hexdigest()

    md5     = hashlib.md5()
    md5.update((pd_id + timestamp + csign).encode())
    csign   = md5.hexdigest()
    return csign

def CalcCardSign(cardid, cardkey, timestamp, passwd):
    md5     = hashlib.md5()
    md5.update(passwd + timestamp + cardid + cardkey)
    return md5.hexdigest()

def HttpRequest(url, body_data, img_data=""):
    rsp         = Rsp()
    post_data   = body_data
    files       = {
     
        'img_data':('img_data',img_data)
    }
    header      = {
     
            'User-Agent': 'Mozilla/5.0',
            }
    rsp_data    = requests.post(url, post_data,files=files ,headers=header)
    rsp.ParseJsonRsp( rsp_data.text)
    return rsp

class FateadmApi():
    # API接口调用类
    # 参数(appID,appKey,pdID,pdKey)
    def __init__(self, app_id, app_key, pd_id, pd_key):
        self.app_id     = app_id
        if app_id is None:
            self.app_id = ""
        self.app_key    = app_key
        self.pd_id      = pd_id
        self.pd_key     = pd_key
        self.host       = FATEA_PRED_URL

    def SetHost(self, url):
        self.host       = url

    #
    # 查询余额
    # 参数:无
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.cust_val:用户余额
    #   rsp.err_msg:异常时返回异常详情
    #
    def QueryBalc(self):
        tm      = str( int(time.time()))
        sign    = CalcSign( self.pd_id, self.pd_key, tm)
        param   = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign
                }
        url     = self.host + "/api/custval"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("query succ ret: {} cust_val: {} rsp: {} pred: {}".format( rsp.ret_code, rsp.cust_val, rsp.err_msg, rsp.pred_rsp.value))
        else:
            LOG("query failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 查询网络延迟
    # 参数:pred_type:识别类型
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg: 异常时返回异常详情
    #
    def QueryTTS(self, pred_type):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                "predict_type":pred_type,
                }
        if self.app_id != "":
            #
            asign       = CalcSign(self.app_id, self.app_key, tm)
            param["appid"]     = self.app_id
            param["asign"]      = asign
        url     = self.host + "/api/qcrtt"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("query rtt succ ret: {} request_id: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.err_msg))
        else:
            LOG("predict failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 识别验证码
    # 参数:pred_type:识别类型  img_data:图片的数据
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.request_id:唯一订单号
    #   rsp.pred_rsp.value:识别结果
    #   rsp.err_msg:异常时返回异常详情
    #
    def Predict(self, pred_type, img_data, head_info = ""):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp": tm,
                "sign": sign,
                "predict_type": pred_type,
                "up_type": "mt"
                }
        if head_info is not None or head_info != "":
            param["head_info"] = head_info
        if self.app_id != "":
            #
            asign       = CalcSign(self.app_id, self.app_key, tm)
            param["appid"]     = self.app_id
            param["asign"]      = asign
        url     = self.host + "/api/capreg"
        files = img_data
        rsp     = HttpRequest(url, param, files)
        if rsp.ret_code == 0:
            LOG("predict succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("predict failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg))
            if rsp.ret_code == 4003:
                #lack of money
                LOG("cust_val <= 0 lack of money, please charge immediately")
        return rsp

    #
    # 从文件进行验证码识别
    # 参数:pred_type;识别类型  file_name:文件名
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.request_id:唯一订单号
    #   rsp.pred_rsp.value:识别结果
    #   rsp.err_msg:异常时返回异常详情
    #
    def PredictFromFile( self, pred_type, file_name, head_info = ""):
        with open(file_name, "rb") as f:
            data = f.read()
        return self.Predict(pred_type,data,head_info=head_info)

    #
    # 识别失败,进行退款请求
    # 参数:request_id:需要退款的订单号
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg:异常时返回异常详情
    #
    # 注意:
    #    Predict识别接口,仅在ret_code == 0时才会进行扣款,才需要进行退款请求,否则无需进行退款操作
    # 注意2:
    #   退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    #
    def Justice(self, request_id):
        if request_id == "":
            #
            return
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                "request_id":request_id
                }
        url     = self.host + "/api/capjust"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("justice succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("justice failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    #
    # 充值接口
    # 参数:cardid:充值卡号  cardkey:充值卡签名串
    # 返回值:
    #   rsp.ret_code:正常返回0
    #   rsp.err_msg:异常时返回异常详情
    #
    def Charge(self, cardid, cardkey):
        tm          = str( int(time.time()))
        sign        = CalcSign( self.pd_id, self.pd_key, tm)
        csign       = CalcCardSign(cardid, cardkey, tm, self.pd_key)
        param       = {
     
                "user_id": self.pd_id,
                "timestamp":tm,
                "sign":sign,
                'cardid':cardid,
                'csign':csign
                }
        url     = self.host + "/api/charge"
        rsp     = HttpRequest(url, param)
        if rsp.ret_code == 0:
            LOG("charge succ ret: {} request_id: {} pred: {} err: {}".format( rsp.ret_code, rsp.request_id, rsp.pred_rsp.value, rsp.err_msg))
        else:
            LOG("charge failed ret: {} err: {}".format( rsp.ret_code, rsp.err_msg.encode('utf-8')))
        return rsp

    ##
    # 充值,只返回是否成功
    # 参数:cardid:充值卡号  cardkey:充值卡签名串
    # 返回值: 充值成功时返回0
    ##
    def ExtendCharge(self, cardid, cardkey):
        return self.Charge(cardid,cardkey).ret_code

    ##
    # 调用退款,只返回是否成功
    # 参数: request_id:需要退款的订单号
    # 返回值: 退款成功时返回0
    #
    # 注意:
    #    Predict识别接口,仅在ret_code == 0时才会进行扣款,才需要进行退款请求,否则无需进行退款操作
    # 注意2:
    #   退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    ##
    def JusticeExtend(self, request_id):
        return self.Justice(request_id).ret_code

    ##
    # 查询余额,只返回余额
    # 参数:无
    # 返回值:rsp.cust_val:余额
    ##
    def QueryBalcExtend(self):
        rsp = self.QueryBalc()
        return rsp.cust_val

    ##
    # 从文件识别验证码,只返回识别结果
    # 参数:pred_type;识别类型  file_name:文件名
    # 返回值: rsp.pred_rsp.value:识别的结果
    ##
    def PredictFromFileExtend( self, pred_type, file_name, head_info = ""):
        rsp = self.PredictFromFile(pred_type,file_name,head_info)
        return rsp.pred_rsp.value

    ##
    # 识别接口,只返回识别结果
    # 参数:pred_type:识别类型  img_data:图片的数据
    # 返回值: rsp.pred_rsp.value:识别的结果
    ##
    def PredictExtend(self,pred_type, img_data, head_info = ""):
        rsp = self.Predict(pred_type,img_data,head_info)
        return rsp.pred_rsp.value



def TestFunc():
    pd_id           = "128292"     #用户中心页可以查询到pd信息
    pd_key          = "bASHdc/12ISJOX7pV3qhPr2ntQ6QcEkV"
    app_id          = "100001"     #开发者分成用的账号,在开发者中心可以查询到
    app_key         = "123456"
    #识别类型,
    #具体类型可以查看官方网站的价格页选择具体的类型,不清楚类型的,可以咨询客服
    pred_type       = "30400"
    api             = FateadmApi(app_id, app_key, pd_id, pd_key)
    # 查询余额
    balance 		= api.QueryBalcExtend()   # 直接返余额
    # api.QueryBalc()

    # 通过文件形式识别:
    file_name       = 'img.gif'
    # 多网站类型时,需要增加src_url参数,具体请参考api文档: http://docs.fateadm.com/web/#/1?page_id=6
    # result =  api.PredictFromFileExtend(pred_type,file_name)   # 直接返回识别结果
    rsp             = api.PredictFromFile(pred_type, file_name)  # 返回详细识别结果

    '''
    # 如果不是通过文件识别,则调用Predict接口:
    # result 			= api.PredictExtend(pred_type,data)   	# 直接返回识别结果
    rsp             = api.Predict(pred_type,data)				# 返回详细的识别结果
    '''

    just_flag    = False
    if just_flag :
        if rsp.ret_code == 0:
            #识别的结果如果与预期不符,可以调用这个接口将预期不符的订单退款
            # 退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
            api.Justice( rsp.request_id)

    #card_id         = "123"
    #card_key        = "123"
    #充值
    #api.Charge(card_id, card_key)
    LOG("print in testfunc")

if __name__ == "__main__":
    TestFunc()



3.爬取人人网当前用户的个人详情页数据

import requests
from lxml import etree
from fateadm_api import FateadmApi


def TestFunc(imgPath,codyType):
    pd_id           = "xxxxxxx"     #用户中心页可以查询到pd信息
    pd_key          = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
    app_id          = "xxxxxxxx"     #开发者分成用的账号,在开发者中心可以查询到
    app_key         = "xxxxxxxxx"
    #识别类型,
    #具体类型可以查看官方网站的价格页选择具体的类型,不清楚类型的,可以咨询客服
    pred_type       = codyType
    api             = FateadmApi(app_id, app_key, pd_id, pd_key)
    # 查询余额
    balance 		= api.QueryBalcExtend()   # 直接返余额
    # api.QueryBalc()

    # 通过文件形式识别:
    file_name       = imgPath
    # 多网站类型时,需要增加src_url参数,具体请参考api文档: http://docs.fateadm.com/web/#/1?page_id=6
    result =  api.PredictFromFileExtend(pred_type,file_name)   # 直接返回识别结果
    #rsp             = api.PredictFromFile(pred_type, file_name)  # 返回详细识别结果

    '''
    # 如果不是通过文件识别,则调用Predict接口:
    # result 			= api.PredictExtend(pred_type,data)   	# 直接返回识别结果
    rsp             = api.Predict(pred_type,data)				# 返回详细的识别结果
    '''

    # just_flag    = False
    # if just_flag :
    #     if rsp.ret_code == 0:
    #         #识别的结果如果与预期不符,可以调用这个接口将预期不符的订单退款
    #         # 退款仅在正常识别出结果后,无法通过网站验证的情况,请勿非法或者滥用,否则可能进行封号处理
    #         api.Justice( rsp.request_id)

    #card_id         = "123"
    #card_key        = "123"
    #充值
    #api.Charge(card_id, card_key)
    #LOG("print in testfunc")
    return result

# if __name__ == "__main__":
#     TestFunc()

session = requests.Session()

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
url = 'http://www.renren.com/'
page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
code_img_src = tree.xpath('//*[@id="verifyPic_login"]/@src')[0]

code_img_data = requests.get(code_img_src,headers = headers).content

with open('./code.jpg','wb') as fp:
    fp.write(code_img_data)

result = TestFunc('code.jpg',30600)
print('识别结果为:' + result)

login_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=2021121720536'
data = {
     
    'email':'15893301681',
    'icode': result,
    'origURL': 'http://www.renren.com/home',
    'domain': 'renren.com',
    'key_id': '1',
    'captcha_type':' web_login',
    'password': '47e27dd5ef32b31041ebf56ec85a9b1e4233875e36396241c88245b188c56cdb',
    'rkey': 'c655ef0c57a72755f1240d6c0efac67d',
    'f': '',
}

response = session.post(login_url,headers = headers, data = data)
print(response.status_code)
with open('renren.html','w',encoding= 'utf-8') as fp:
    fp.write(response.text)

# headers = {
     
#     'Cookies'
# }
detail_url = 'http://www.renren.com/975996803/profile'
detail_page_text = session.get(detail_url,headers = headers).text

with open('bobo.html','w',encoding= 'utf-8') as fp:
    fp.write(detail_page_text)

第六章:高性能异步爬虫(线程池,协程)

1.aiohttp实现多任务异步爬虫

import requests
import asyncio
import time
import aiohttp

start = time.time()
urls = [
    'http://127.0.0.1:5000/bobo','http://127.0.0.1:5000/jay','http://127.0.0.1:5000/tom'
]

async def get_page(url):
    #print('正在下载',url)
    #response = requests.get(url)
    #print('下载完毕',response.text)
    async with aiohttp.ClientSession() as session:
        async with await session.get(url) as response:
            page_text = await response.text()
            print(page_text)

tasks = []

for url in urls:
    c = get_page(url)
    task = asyncio.ensure_future(c)
    tasks.append(task)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()

print('总耗时',end - start)

2.flask服务

from flask import Flask
import time

app = Flask(__name__)

@app.route('/bobo')
def index_bobo():
    time.sleep(2)
    return 'Hello bobo'

@app.route('/jay')
def index_jay():
    time.sleep(2)
    return 'Hello jay'

@app.route('/tom')
def index_tom():
    time.sleep(2)
    return 'Hello tom'

if __name__ == '__main__':
    app.run(threaded = True)

3.多任务协程

import asyncio
import time

async def request(url):
    print('正在下载',url)
    #time.sleep(2)
    await asyncio.sleep(2)

    print('下载完成',url)

start = time.time()
urls = ['www.baidu.com',
        'www.sogou.com',
        'www,goubanjia.com'
]
        
stasks = []
for url in urls:
    c = request(url)
    task = asyncio.ensure_future(c)
    stasks.append(task)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(stasks))

print(time.time()-start)


4.多任务异步爬虫

import requests
import asyncio
import time
#import aiohttp

start = time.time()
urls = [
    'http://127.0.0.1:5000/bobo','http://127.0.0.1:5000/jay','http://127.0.0.1:5000/tom'
]

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

async def get_page(url):
    print('正在下载',url)
    response = requests.get(url,headers =headers)
    print('下载完毕',response.text)

tasks = []

for url in urls:
    c = get_page(url)
    task = asyncio.ensure_future(c)
    tasks.append(task)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()

print('总耗时',end - start)

5.示例

import requests

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'https://www.pearvideo.com/videoStatus.jsp?contId=1719770&mrd=0.559512982919081'

response = requests.get(url,headers = headers)
print(response.text)
"https://video.pearvideo.com/mp4/short/20210209/1613307944808-15603370-hd.mp4

6.同步爬虫

import requests

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

urls = [
    'https://www.cnblogs.com/shaozheng/p/12795953.html',
    'https://www.cnblogs.com/hanfe1/p/12661505.html',
    'https://www.cnblogs.com/tiger666/articles/11070427.html']

def get_content(url):

    print('正在爬取:',url)
    response = requests.get(url,headers = headers)
    if response.status_code == 200:
        return response.content

def parse_content(content):
    print('响应数据的长度为:',len(content))

for url in urls:
    content = get_content(url)
    parse_content(content)

7.线程池基本使用

# import time

# def get_page(str):
#     print('正在下载:',str)
#     time.sleep(2)
#     print('下载成功:',str)

# name_list = ['xiaozi','aa','bb','cc']

# start_time = time.time()

# for i in range(len(name_list)):
#     get_page(name_list[i])

# end_time = time.time()

# print('%d second'%(end_time-start_time))

import time
from multiprocessing.dummy import Pool

start_time = time.time()
def get_page(str):
    print('正在下载:',str)
    time.sleep(2)
    print('下载成功:',str)

name_list = ['xiaozi','aa','bb','cc']
pool = Pool(4)
pool.map(get_page,name_list)

end_time = time.time()

print(end_time-start_time)

8.线程池在爬虫案例中的应用

import requests
from lxml import etree
import re
from multiprocessing.dummy import Pool

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}

url = 'https://www.pearvideo.com/'

page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@class="vervideo-tlist-bd recommend-btbg clearfix"]/ul/li')
#li_list = tree.xpath('//ul[@class="vervideo-tlist-small"]/li')
urls = []
for li in li_list:
    detail_url = 'https://www.pearvideo.com/' + li.xpath('./div/a/@href')[0]
    #name = li.xpath('./div/a/div[2]/text()')[0] + '.mp4'
    name = li.xpath('./div/a/div[2]/div[2]/text()')[0] + '.mp4'
    #print(detail_url,name)
    detail_page_text = requests.get(detail_url,headers = headers).text
    # ex = 'srcUrl="(.*?)",vdoUrl'
    # video_url = re.findall(ex,detail_page_text)[0]
    #video_url = tree.xpath('//img[@class="img"]/@src')[0]
    #https://video.pearvideo.com/mp4/short/20210209/{}-15603370-hd.mp4
    #xhrm码
    print(detail_page_text)






    '''
    dic = {
        'name':name,
        'url':video_url
    }
    urls.append(dic)

    def get_video_data(dic):
        url = dic['url']
        print(dic['name'],'正在下载......')
        data = requests.get(url,headers = headers).context
        with open(dic['name','w']) as fp:
            fp.write(data)
            print(dic['name'],'下载成功!')
pool = Pool(4)
pool.map(get_video_data,urls)

pool.close()
pool.join()
'''



9.协程

import asyncio

async def request(url):
    print('正在请求的url是',url)
    print('请求成功,',url)
    return url

c = request('www.baidu.com')

# loop = asyncio.get_event_loop()
# loop.run_until_complete(c)



# loop = asyncio.get_event_loop()

# task = loop.create_task(c)
# print(task)

# loop.run_until_complete(task)
# print(task)



# loop = asyncio.get_event_loop()
# task = asyncio.ensure_future(c)
# print(task)
# loop.run_until_complete(task)
# print(task)


def callback_func(task):
    print(task.result())

loop = asyncio.get_event_loop()
task = asyncio.ensure_future(c)
task.add_done_callback(callback_func)
loop.run_until_complete(task)

第七章:动态加载数据处理(selenium模块应用,模拟登录12306)

全网最全python爬虫系统进阶学习(原代码整理)_第3张图片

1.selenium基础用法

from selenium import webdriver
from lxml import etree
from time import sleep

bro = webdriver.Chrome(executable_path='chromedriver.exe')

bro.get('http://scxk.nmpa.gov.cn:81/xk/')

page_text = bro.page_source

tree = etree.HTML(page_text)
li_list = tree.xpath('//ul[@id="gzlist"]/li')

for li in li_list:
    name = li.xpath('./dl/@title')[0]
    print(name)

sleep(5)
bro.quit()

2.selenium其他自动操作

from selenium import webdriver
from lxml import etree
from time import sleep

bro = webdriver.Chrome()

bro.get('https://www.taobao.com/')
sleep(2)

search_input = bro.find_element_by_xpath('//*[@id="q"]')
search_input.send_keys('Iphone')
sleep(2)
# bro.execute_async_script('window.scrollTo(0,document.body.scrollHeight)')
# sleep(5)

btn = bro.find_element_by_xpath('//*[@id="J_TSearchForm"]/div[1]/button')
print(type(btn))
btn.click()

bro.get('https://www.baidu.com')
sleep(2)
bro.back()
sleep(2)
bro.forward()

sleep(5)

bro.quit()

3.12306登录示例代码

# 大二
# 2021年2月18日
# 寒假开学时间3月7日

from selenium import webdriver
import time
from PIL import Image
from selenium.webdriver.chrome.options import Options
from selenium.webdriver import ChromeOptions
from selenium.webdriver import ActionChains


# chrome_options = Options()
# chrome_options.add_argument('--headless')
# chrome_options.add_argument('--disable-gpu')
bro = webdriver.Chrome()

bro.maximize_window()
time.sleep(5)
# option = ChromeOptions()
# option.add_experimental_option('excludeSwitches', ['enable-automation'])

# bro = webdriver.Chrome(chrome_options=chrome_options)

# chrome_options.add_argument("--window-size=1920,1050")
# bro = webdriver.Chrome(chrome_options=chrome_options,options= option)
bro.get('https://kyfw.12306.cn/otn/resources/login.html')

time.sleep(3)

bro.find_element_by_xpath('/html/body/div[2]/div[2]/ul/li[2]/a').click()

bro.save_screenshot('aa.png')
time.sleep(2)

code_img_ele = bro.find_element_by_xpath('//*[@id="J-loginImg"]')
time.sleep(2)
location = code_img_ele.location
print('location:',location)
size = code_img_ele.size
print('size',size)

rangle = (
int(location['x']),int(location['y']),int(location['x'] + int(size['width'])),int(location['y']+int(size['height']))
)
print(rangle)

i = Image.open('./aa.png')
code_img_name = './code.png'

frame = i.crop(rangle)
frame.save(code_img_name)

#bro.quit()


# 大二
# 2021年2月19日
# 寒假开学时间3月7日
#验证码坐标无法准确识别,坐标错位,使用无头浏览器可以识别
'''
result = print(chaojiying.PostPic(im, 9004)['pic_str'])
all_list = []
if '|' in result:
    list_1 = result.split('!')
    count_1 = len(list_1)
    for i in range(count_1):
        xy_list = []
        x = int(list_1[i].split(',')[0])
        y = int(list_1[i].split(',')[1])
        xy_list.append(x)
        xy_list.append(y)
        all_list.append(xy_list)

else:
    xy_list = []
    x = int(list_1[i].split(',')[0])
    y = int(list_1[i].split(',')[1])
    xy_list.append(x)
    xy_list.append(y)
    all_list.append(xy_list)

print(all_list)

for l in all_list:
    x = l[0]
    y = l[1]
    ActionChains(bro).move_to_element_with_offset(code_img_ele,x,y).click().perform()

    time.sleep(0.5)
    
bro.find_element_by_id('J-userName').send_keys('')
time.sleep(2)
bro.find_element_by_id('J-password').send_keys('')
time.sleep(2)
bro.find_element_by_id('J-login').click()
bro.quit()

'''

4.动作链与iframe的处理

from selenium import webdriver
from time import sleep
from selenium.webdriver import ActionChains

bro = webdriver.Chrome()

bro.get('https://www.runoob.com/try/try.php?filename=juquryui-api-droppable')

bro.switch_to.frame('id')
div = bro.find_elements_by_id('')

action = ActionChains(bro)

action.click_and_hold(div)
for i in range(5):
    action.move_by_offset(17,0)
    sleep(0.3)

action.release()
print(div)



5.谷歌无头浏览器+反检测

from selenium import webdriver
from time import sleep
from selenium.webdriver.chrome.options import Options
from selenium.webdriver import ChromeOptions

chrome_options = Options()
chrome_options.add_argument('--headless')
chrome_options.add_argument('--disable-gpu')

option = ChromeOptions()
option.add_experimental_option('excludeSwitches', ['enable-automation'])

bro = webdriver.Chrome(chrome_options=chrome_options,options=option)

bro.get('https://www.baidu.com')
print(bro.page_source)
sleep(2)
bro.quit()

6.基于selenium实现1236模拟登录

#2021年2.18

import requests
from hashlib import md5

class Chaojiying_Client(object):

    def __init__(self, username, password, soft_id):
        self.username = username
        password =  password.encode('utf8')
        self.password = md5(password).hexdigest()
        self.soft_id = soft_id
        self.base_params = {
     
            'user': self.username,
            'pass2': self.password,
            'softid': self.soft_id,
        }
        self.headers = {
     
            'Connection': 'Keep-Alive',
            'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
        }

    def PostPic(self, im, codetype):
        """
        im: 图片字节
        codetype: 题目类型 参考 http://www.chaojiying.com/price.html
        """
        params = {
     
            'codetype': codetype,
        }
        params.update(self.base_params)
        files = {
     'userfile': ('ccc.jpg', im)}
        r = requests.post('http://upload.chaojiying.net/Upload/Processing.php', data=params, files=files, headers=self.headers)
        return r.json()

    def ReportError(self, im_id):
        """
        im_id:报错题目的图片ID
        """
        params = {
     
            'id': im_id,
        }
        params.update(self.base_params)
        r = requests.post('http://upload.chaojiying.net/Upload/ReportError.php', data=params, headers=self.headers)
        return r.json()


# if __name__ == '__main__':
# 	chaojiying = Chaojiying_Client('超级鹰用户名', '超级鹰用户名的密码', '96001')	
# 	im = open('a.jpg', 'rb').read()													
# 	print chaojiying.PostPic(im, 1902)												

# chaojiying = Chaojiying_Client('xxxxxxxxxx', 'xxxxxxxxxx', 'xxxxxxx')	
# im = open('第七章:动态加载数据处理/12306.jpg', 'rb').read()													
# print(chaojiying.PostPic(im, 9004)['pic_str'])

from selenium import webdriver
import time

bro = webdriver.Chrome()
bro.get('https://kyfw.12306.cn/otn/resources/login.html')

time.sleep(3)

bro.find_element_by_xpath('/html/body/div[2]/div[2]/ul/li[2]/a').click()




7.模拟登录qq空间

from selenium import webdriver
from selenium.webdriver import ActionChains
from time import sleep

bro = webdriver.Chrome()
bro.get('https://qzone.qq.com/')

bro.switch_to.frame('login_frame')

bro.find_element_by_id('switcher_plogin').click()

#account = input('请输入账号:')
bro.find_element_by_id('u').send_keys('')
#password = input('请输入密码:')

bro.find_element_by_id('p').send_keys('')
bro.find_element_by_id('login_button').click()


第八章:scrapy框架

1.各种项目实战,scrapy各种配置修改
2.bossPro示例

# 大二
# 2021年2月23日星期二
# 寒假开学时间3月7日
import requests
from lxml import etree

#url = 'https://www.zhipin.com/c101010100/?query=python&ka=sel-city-101010100'
url = 'https://www.zhipin.com/c101120100/b_%E9%95%BF%E6%B8%85%E5%8C%BA/?ka=sel-business-5'
headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36'
}

page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
print(tree)
li_list = tree.xpath('//*[@id="main"]/div/div[2]/ul/li')
print(li_list)
for li in li_list:
    job_name = li.xpath('.//span[@class="job-name"]a/text()')
    print(job_name)

3.qiubaiPro示例

# -*- coding: utf-8 -*-
# 大二
# 2021年2月21日星期日
# 寒假开学时间3月7日

import requests
from lxml import etree

headers = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36'
}

url = 'https://www.qiushibaike.com/text/'
page_text = requests.get(url,headers = headers).text

tree = etree.HTML(page_text)
div_list = tree.xpath('//div[@id="content"]/div[1]/div[2]/div')

print(div_list)
# print(tree.xpath('//*[@id="qiushi_tag_124072337"]/a[1]/div/span//text()'))

for div in div_list:
    auther = div.xpath('./div[1]/a[2]/h2/text()')[0]
    # print(auther)
    content = div.xpath('./a[1]/div/span//text()')
    content = ''.join(content)
    # content = div.xpath('//*[@id="qiushi_tag_124072337"]/a[1]/div/span')
    # print(content)
    print(auther,content)

# print(tree.xpath('//*[@id="qiushi_tag_124072337"]/div[1]/a[2]/h2/text()'))

4.数据库示例

# 大二
# 2021年2月21日星期日
# 寒假开学时间3月7日

import pymysql

# 链接数据库
# 参数1:mysql服务器所在主机ip
# 参数2:用户名
# 参数3:密码
# 参数4:要链接的数据库名
# db = pymysql.connect("localhost", "root", "200829", "wj" )
db = pymysql.connect("192.168.31.19", "root", "200829", "wj" )

# 创建一个cursor对象
cursor = db.cursor()

sql = "select version()"

# 执行sql语句
cursor.execute(sql)

# 获取返回的信息
data = cursor.fetchone()
print(data)

# 断开
cursor.close()
db.close()

全网最全python爬虫系统进阶学习(原代码整理)_第4张图片
在这上面scrapy项目不容易上传
有需要scrapy相关的,可以在我的资源上下载
也可以在公众号(yk 坤帝,跟博客昵称一样)获取
公众号获取的速度可能有点慢,才申请的,还在探索过程
全网最全python爬虫系统进阶学习(原代码整理)_第5张图片
有问题的,想交流的也可以在公众号上留言

你可能感兴趣的:(笔记,python,爬虫,mysql)