Apache Storm part 2

Example 1 : Word Count

Every time you start a new project, the first thing to do is drawing your topology blueprint.

  1. word count topology data flow

    1.Sentence spout : { "sentence":"my dog has fleas" }
    2.Split sentences bolt :
    { "word" : "my" }
    { "word" : "dog" }
    { "word" : "has" }
    { "word" : "fleas" }
    3.Word count bolt:
    { "word" : "dog", "count" : 5 }

    1. report bolt: for now, we will just use the a reddis source code form udacity.
  2. Implementing the sentence spout

public class RandomSentenceSpout extends BaseRichSpout {
  SpoutOutputCollector _collector;
  Random _rand;


  @Override
  public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
    _collector = collector;
    _rand = new Random();
  }

  @Override
  public void nextTuple() {
    Utils.sleep(100);
    String[] sentences = new String[]{
      "the cow jumped over the moon",
      "an apple a day keeps the doctor away",
      "four score and seven years ago",
      "snow white and the seven dwarfs",
      "i am at two with nature"
      };
    String sentence = sentences[_rand.nextInt(sentences.length)];
    _collector.emit(new Values(sentence));
  }

  @Override
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("sentence"));
  }

}
  1. Implementing the split sentence bolt
public class SplitSentenceBolt extends BaseRichBolt{
       private OutputCollector collector;
       public void prepare(Map config, TopologyContext context,
    OutputCollector collector) {
           this.collector = collector;
       }
       public void execute(Tuple tuple) {
           String sentence = tuple.getStringByField("sentence");
           String[] words = sentence.split(" ");
           for(String word : words){
               this.collector.emit(new Values(word));
           }
}
       public void declareOutputFields(OutputFieldsDeclarer declarer) {
           declarer.declare(new Fields("word"));
 } }
  1. implement the word count bolt:
public class WordCountBolt extends BaseRichBolt{
       private OutputCollector collector;
       private HashMap counts = null;
       public void prepare(Map config, TopologyContext context,
               OutputCollector collector) {
           this.collector = collector;
           this.counts = new HashMap();
       }
       public void execute(Tuple tuple) {
           String word = tuple.getStringByField("word");
           Long count = this.counts.get(word);
           if(count == null){
count = 0L; }
           count++;
           this.counts.put(word, count);
           this.collector.emit(new Values(word, count));
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
           declarer.declare(new Fields("word", "count"));
}
}

5 . Implement report bolt

public class ReportBolt extends BaseRichBolt {
       private HashMap counts = null;
       public void prepare(Map config, TopologyContext context,
   OutputCollector collector) {
           this.counts = new HashMap();
       }
       public void execute(Tuple tuple) {
           String word = tuple.getStringByField("word");
           Long count = tuple.getLongByField("count");
           this.counts.put(word, count);
}
       public void declareOutputFields(OutputFieldsDeclarer declarer) {
           // this bolt does not emit anything
}
       public void cleanup() {
           System.out.println("--- FINAL COUNTS ---");
           List keys = new ArrayList();
           keys.addAll(this.counts.keySet());
           Collections.sort(keys);
           for (String key : keys) {
               System.out.println(key + " : " + this.counts.get(key));
           }
           System.out.println("--------------");
       }
 }
  1. Combine this and implement topology
public class WordCountTopology {
       private static final String SENTENCE_SPOUT_ID = "sentence-spout";
       private static final String SPLIT_BOLT_ID = "split-bolt";
       private static final String COUNT_BOLT_ID = "count-bolt";
       private static final String REPORT_BOLT_ID = "report-bolt";
       private static final String TOPOLOGY_NAME = "word-count-topology";
       public static void main(String[] args) throws Exception {
           SentenceSpout spout = new SentenceSpout();
           SplitSentenceBolt splitBolt = new SplitSentenceBolt();
           WordCountBolt countBolt = new WordCountBolt();
           ReportBolt reportBolt = new ReportBolt();
           TopologyBuilder builder = new TopologyBuilder();
           builder.setSpout(SENTENCE_SPOUT_ID, spout);
           // SentenceSpout --> SplitSentenceBolt
           builder.setBolt(SPLIT_BOLT_ID, splitBolt)
                   .shuffleGrouping(SENTENCE_SPOUT_ID);
           // SplitSentenceBolt --> WordCountBolt
           builder.setBolt(COUNT_BOLT_ID, countBolt)
                   .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
           // WordCountBolt --> ReportBolt
           builder.setBolt(REPORT_BOLT_ID, reportBolt)
                   .globalGrouping(COUNT_BOLT_ID);
           Config config = new Config();
           LocalCluster cluster = new LocalCluster();
           cluster.submitTopology(TOPOLOGY_NAME, config, builder.
   createTopology());
} }
waitForSeconds(10);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown(); 
  1. output:
--- FINAL COUNTS ---
   a : 2726
   ate : 2722
   beverages : 2723
   cold : 2723
   cow : 2726
   dog : 5445
   don't : 5444
   fleas : 5451
   has : 2723
   have : 2722
   homework : 2722
   i : 8175
   like : 5449
   man : 2722
   my : 5445
   the : 2727
   think : 2722
   --------------

Example 2: Trident Topologies

Paste_Image.png
Apache Storm part 2_第1张图片
Paste_Image.png

The code is like this:

public class OutbreakDetectionTopology {
       public static StormTopology buildTopology() {
       TridentTopology topology = new TridentTopology();
       DiagnosisEventSpout spout = new DiagnosisEventSpout();
       Stream inputStream = topology.newStream("event", spout);
       inputStream
           .each(new Fields("event"), new DiseaseFilter()))
           .each(new Fields("event"), new CityAssignment(), new         Fields("city"))
           .each(new Fields("event", "city"), new HourAssignment(), new Fields("hour",  "cityDiseaseHour"))
           .groupBy(new Fields("cityDiseaseHour"))
.persistentAggregate(new OutbreakTrendFactory(),
                                  new Count(),
                                  new Fields("count"))
.newValuesStream()
// Detect an outbreak
.each(new Fields("cityDiseaseHour", "count"),
      new OutbreakDetector(), new Fields("alert"))
// Dispatch the alert
.each(new Fields("alert"),
      new DispatchAlert(), new Fields());
}
}

Exercise

Set up

  1. Install VirtualBox for your operating system:https://www.virtualbox.org/wiki/Downloads
  2. Install Vagrant
  3. git clone https://github.com/Udacity/ud381
  4. vagrant up
  5. vagrant ssh
  6. open another terminal, and vagrant ssh
  7. enter the /viz folder, and run python app.py (you can build your own report bolt like above one instead of using this)
  8. Change your source file and display the word count.
  9. Try different group streaming method.

你可能感兴趣的:(Apache Storm part 2)