JAVA时间复杂度程序_java算法之时间复杂度

引导

通常,在编程过程中比较常遇见的问题就是性能瓶颈。很多时候我们是去考虑怎么横向扩展,我们听到最多的就是aop(面向切面编程),但在这之前往往我们忽略掉了最基本的问题系统性能是否真的达到了瓶颈?

这时候就要用到算法知识了,首先分析在数学角度上你的算法证明是正确的基础上,其次就是分析算法时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

算法的效率

虽然计算机能快速的完成运算处理,但实际上,它也需要根据输入数据的大小和算法效率来消耗一定的处理器资源。要想编写出能高效运行的程序,我们就需要考虑到算法的效率。

算法的效率主要由以下两个复杂度来评估:

时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。

空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。

设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度。本章也主要来讲述时间复杂度。

时间复杂度

时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

时间复杂度

前面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。

推导大O阶

推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法:

1.用常数1来取代运行时间中所有加法常数。

2.修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

常数阶

int sum = 0,n = 100; //执行一次

sum = (1+n)*n/2; //执行一次

System.out.println (sum); //执行一次

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。

线性阶

int number=1;

while(number

number=number*2;

//时间复杂度为O(1)的算法

...

}

对数阶

int number=1;

while(number

number=number*2;

//时间复杂度为O(1)的算法

...

}

其他常见复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度:

f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。

f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。

f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。

f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。

f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。

参考:

你可能感兴趣的:(JAVA时间复杂度程序)