本文将首先带您回顾“系统调用”的概念以及它的作用,然后从经典的Hello World开始,逐行代码层层分析——鸿蒙OS的系统调用是如何实现的。
9月10号 华为开发者大会(HDC)上,华为向广大开发者宣布了鸿蒙2.0系统开源,源码托管在国内源码托管平台“码云”上:https://openharmony.gitee.com/
我也第一时间从码云下载了鸿蒙系统的源代码,并进行了编译和分析。当晚回看了HDC上的关于鸿蒙OS 2.0的主题演讲,个人最为好奇的是——这次开源的liteos-a
内核。因为它支持了带MMU(内存管理单元)的ARM Cortex-A设备;我们知道,在带有MMU的处理器上,可以实现虚拟内存,进而实现进程之间的隔离、内核态和用户态的隔离等等这些功能。
引用一张官方文档中的图片,看看liteos-a内核在整个系统中的位置。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5nF7Sfq4-1601526018822)(https://oscimg.oschina.net/oscnet/up-79dc6adb43fbf75ba60582258cf287382db.png “鸿蒙OS架构图”)]
这次开源的鸿蒙系统中同时包含了两个内核,分别是liteos-a和liteos-m,其中的liteos-m和以前开源的LiteOS相当,而liteos-a
是面向应用处理器的操作系统内核,提供了更为丰富的内核功能。此前已经开源的LiteOS,只是一个实时操作系统(RTOS),它主要面向的是内存和闪存配置都比较低的微控制器。
我们先来简单回顾一下操作系统课程的一个知识点——系统调用,以及为什么会有系统调用?它的作用是什么?如果你对于这两个问题以及了然于心,可以直接跳过本段,看后面的源码分析部分。
在微控制器这样的系统资源较少的硬件系统(比如STM32、MSP430、AVR、8051)上,通常直接裸跑程序(也就是不使用任何操作系统),或者使用像FreeRTOS、Zephyr这一类的实时操作系统(RTOS)。这些实时操作系统中,应用程序和内核程序直接运行在同一个物理内存空间(因为这些设备一般没有MMU)上。而RTOS只提供了线程(或者叫任务),线程间同步、互斥等基础设施;应用程序可以直接调用内核函数(用户程序和内核程序只是逻辑上的划分,本质上并没有太大不同);一旦有一个线程发生异常,整个系统就会重启。
而在ARM Cortex-A、x86、x86-64这样的系统资源丰富的硬件系统上,SoC或CPU芯片内部一般集成了MMU,而且CPU有特权级别状态(状态寄存器的某些位)。基于特权级别状态,可以实现部分硬件相关的操作只能在内核态进行,例如访问外设等,用户态应用程序不能访问硬件设备。在这样的系统上,系统调用是用户态应用程序调用内核功能的请求入口。通俗的说,系统调用就是在有内核态和用户态隔离的操作系统上,用户态进程访问内核态资源的一种方式。
接下来,我们一起从鸿蒙系统源码分析它在liteos-a内核上是如何实现系统调用的。鸿蒙OS使用了musl libc,应用程序和系统服务都通过musl libc封装的系统调用API接口访问内核相关功能。
下面,我们就从经典的helloworld分析整个系统调用的流程。鸿蒙系统目前官方支持了三个芯片平台,分别是Hi3516DV300
(双核ARM Cortex A-7 @ 900M Hz),Hi3518EV300
(单核ARM Cortex A-7 @ 900MHz 内置64MB DDR2内存)和Hi3861V100
(单核RISC-V @160M Hz 内置 SRAM 和 Flash)。其中Hi3516
和Hi3518
是带有Cortex A7
内核的芯片,鸿蒙系统在这两个平台使用的内核自然是liteos-a。根据官方指导文档,我们知道这两个平台的第一个应用程序示例都是helloworld,源码路径为:applications/sample/camera/app/src/helloworld.c
,除去头部注释,代码内容为:
#include
#include "los_sample.h"
int main(int argc, char **argv)
{
printf("\n************************************************\n");
printf("\n\t\tHello OHOS!\n");
printf("\n************************************************\n\n");
LOS_Sample(g_num);
return 0;
}
文件路径:third_party/musl/src/stdio/printf.c
:
int printf(const char *restrict fmt, ...)
{
int ret;
va_list ap;
va_start(ap, fmt);
ret = vfprintf(stdout, fmt, ap);
va_end(ap);
return ret;
}
我们看到了,这里使用标准库的stdout
作为第一个参数调用了vfprintf
,我们继续向下分析third_party/musl/src/stdio/vfprintf.c
文件:
int vfprintf(FILE *restrict f, const char *restrict fmt, va_list ap)
{
// 删减若干和参数 f 无关的代码行
FLOCK(f);
olderr = f->flags & F_ERR;
if (f->mode < 1) f->flags &= ~F_ERR;
if (!f->buf_size) {
saved_buf = f->buf;
f->buf = internal_buf;
f->buf_size = sizeof internal_buf;
f->wpos = f->wbase = f->wend = 0;
}
if (!f->wend && __towrite(f)) ret = -1;
else ret = printf_core(f, fmt, &ap2, nl_arg, nl_type);
if (saved_buf) {
f->write(f, 0, 0);
if (!f->wpos) ret = -1;
f->buf = saved_buf;
f->buf_size = 0;
f->wpos = f->wbase = f->wend = 0;
}
if (f->flags & F_ERR) ret = -1;
f->flags |= olderr;
FUNLOCK(f);
va_end(ap2);
return ret;
}
这里,我们继续关注三处带有参数f
的调用:__towrite(f),printf_core(f, fmt, &ap2, nl_arg, nl_type),f->write(f, 0, 0);
其中,__towrite
的实现位于third_party/musl/src/stdio/__towrite.c
(可见和系统调用无关):
int __towrite(FILE *f)
{
f->mode |= f->mode-1;
if (f->flags & F_NOWR) {
f->flags |= F_ERR;
return EOF;
}
/* Clear read buffer (easier than summoning nasal demons) */
f->rpos = f->rend = 0;
/* Activate write through the buffer. */
f->wpos = f->wbase = f->buf;
f->wend = f->buf + f->buf_size;
return 0;
}
从内容上看,__towrite
函数的作用是更新文件结构FILE
的wpos
、wbase
、wend
成员,以指向待写入实际文件的内存缓冲区域,同时将rpos
、rend
值为零。
printf_core
的实现也位于src/stdio/vfprintf.c
文件:
static int printf_core(FILE *f, const char *fmt, va_list *ap, union arg *nl_arg, int *nl_type)
{
// 删除了变量定义部分
for (;;) {
/* This error is only specified for snprintf, but since it's
* unspecified for other forms, do the same. Stop immediately
* on overflow; otherwise %n could produce wrong results. */
if (l > INT_MAX - cnt) goto overflow;
/* Update output count, end loop when fmt is exhausted */
cnt += l;
if (!*s) break;
/* Handle literal text and %% format specifiers */
for (a=s; *s && *s!='%'; s++);
for (z=s; s[0]=='%' && s[1]=='%'; z++, s+=2);
if (z-a > INT_MAX-cnt) goto overflow;
l = z-a;
if (f) out(f, a, l);
if (l) continue;
if (isdigit(s[1]) && s[2]=='$') {
l10n=1;
argpos = s[1]-'0';
s+=3;
} else {
argpos = -1;
s++;
}
/* Read modifier flags */
for (fl=0; (unsigned)*s-' '<32 && (FLAGMASK&(1U<<*s-' ')); s++)
fl |= 1U<<*s-' ';
/* Read field width */
if (*s=='*') {
if (isdigit(s[1]) && s[2]=='$') {
l10n=1;
nl_type[s[1]-'0'] = INT;
w = nl_arg[s[1]-'0'].i;
s+=3;
} else if (!l10n) {
w = f ? va_arg(*ap, int) : 0;
s++;
} else goto inval;
if (w<0) fl|=LEFT_ADJ, w=-w;
} else if ((w=getint(&s))<0) goto overflow;
/* Read precision */
if (*s=='.' && s[1]=='*') {
if (isdigit(s[2]) && s[3]=='$') {
nl_type[s[2]-'0'] = INT;
p = nl_arg[s[2]-'0'].i;
s+=4;
} else if (!l10n) {
p = f ? va_arg(*ap, int) : 0;
s+=2;
} else goto inval;
xp = (p>=0);
} else if (*s=='.') {
s++;
p = getint(&s);
xp = 1;
} else {
p = -1;
xp = 0;
}
/* Format specifier state machine */
st=0;
do {
if (OOB(*s)) goto inval;
ps=st;
st=states[st]S(*s++);
} while (st-1<STOP);
if (!st) goto inval;
/* Check validity of argument type (nl/normal) */
if (st==NOARG) {
if (argpos>=0) goto inval;
} else {
if (argpos>=0) nl_type[argpos]=st, arg=nl_arg[argpos];
else if (f) pop_arg(&arg, st, ap);
else return 0;
}
if (!f) continue;
z = buf + sizeof(buf);
prefix = "-+ 0X0x";
pl = 0;
t = s[-1];
/* Transform ls,lc -> S,C */
if (ps && (t&15)==3) t&=~32;
/* - and 0 flags are mutually exclusive */
if (fl & LEFT_ADJ) fl &= ~ZERO_PAD;
switch(t) {
case 'n':
switch(ps) {
case BARE: *(int *)arg.p = cnt; break;
case LPRE: *(long *)arg.p = cnt; break;
case LLPRE: *(long long *)arg.p = cnt; break;
case HPRE: *(unsigned short *)arg.p = cnt; break;
case HHPRE: *(unsigned char *)arg.p = cnt; break;
case ZTPRE: *(size_t *)arg.p = cnt; break;
case JPRE: *(uintmax_t *)arg.p = cnt; break;
}
continue;
case 'p':
p = MAX(p, 2*sizeof(void*));
t = 'x';
fl |= ALT_FORM;
case 'x': case 'X':
a = fmt_x(arg.i, z, t&32);
if (arg.i && (fl & ALT_FORM)) prefix+=(t>>4), pl=2;
if (0) {
case 'o':
a = fmt_o(arg.i, z);
if ((fl&ALT_FORM) && p<z-a+1) p=z-a+1;
} if (0) {
case 'd': case 'i':
pl=1;
if (arg.i>INTMAX_MAX) {
arg.i=-arg.i;
} else if (fl & MARK_POS) {
prefix++;
} else if (fl & PAD_POS) {
prefix+=2;
} else pl=0;
case 'u':
a = fmt_u(arg.i, z);
}
if (xp && p<0) goto overflow;
if (xp) fl &= ~ZERO_PAD;
if (!arg.i && !p) {
a=z;
break;
}
p = MAX(p, z-a + !arg.i);
break;
case 'c':
*(a=z-(p=1))=arg.i;
fl &= ~ZERO_PAD;
break;
case 'm':
if (1) a = strerror(errno); else
case 's':
a = arg.p ? arg.p : "(null)";
z = a + strnlen(a, p<0 ? INT_MAX : p);
if (p<0 && *z) goto overflow;
p = z-a;
fl &= ~ZERO_PAD;
break;
case 'C':
wc[0] = arg.i;
wc[1] = 0;
arg.p = wc;
p = -1;
case 'S':
ws = arg.p;
for (i=l=0; i<p && *ws && (l=wctomb(mb, *ws++))>=0 && l<=p-i; i+=l);
if (l<0) return -1;
if (i > INT_MAX) goto overflow;
p = i;
pad(f, ' ', w, p, fl);
ws = arg.p;
for (i=0; i<0U+p && *ws && i+(l=wctomb(mb, *ws++))<=p; i+=l)
out(f, mb, l);
pad(f, ' ', w, p, fl^LEFT_ADJ);
l = w>p ? w : p;
continue;
case 'e': case 'f': case 'g': case 'a':
case 'E': case 'F': case 'G': case 'A':
if (xp && p<0) goto overflow;
l = fmt_fp(f, arg.f, w, p, fl, t);
if (l<0) goto overflow;
continue;
}
if (p < z-a) p = z-a;
if (p > INT_MAX-pl) goto overflow;
if (w < pl+p) w = pl+p;
if (w > INT_MAX-cnt) goto overflow;
pad(f, ' ', w, pl+p, fl);
out(f, prefix, pl);
pad(f, '0', w, pl+p, fl^ZERO_PAD);
pad(f, '0', p, z-a, 0);
out(f, a, z-a);
pad(f, ' ', w, pl+p, fl^LEFT_ADJ);
l = w;
}
if (f) return cnt;
if (!l10n) return 0;
for (i=1; i<=NL_ARGMAX && nl_type[i]; i++)
pop_arg(nl_arg+i, nl_type[i], ap);
for (; i<=NL_ARGMAX && !nl_type[i]; i++);
if (i<=NL_ARGMAX) goto inval;
return 1;
inval: // 删除了错误处理代码
overflow: // 删除了错误处理代码
}
从注释和代码结构可以看出,这个函数实现了格式化字符串展开的主要流程,这里又调用了out
和pad
两个函数,从命名猜测应该分别是向内存缓冲区写入内容和填充内容的函数,它们的实现也位于vfprintf.c
中:
static void out(FILE *f, const char *s, size_t l)
{
if (!(f->flags & F_ERR)) __fwritex((void *)s, l, f);
}
static void pad(FILE *f, char c, int w, int l, int fl)
{
char pad[256];
if (fl & (LEFT_ADJ | ZERO_PAD) || l >= w) return;
l = w - l;
memset(pad, c, l>sizeof pad ? sizeof pad : l);
for (; l >= sizeof pad; l -= sizeof pad)
out(f, pad, sizeof pad);
out(f, pad, l);
}
它们又调用了__fwritex
,它的实现位于third_party/musl/src/stdio/fwrite.c
:
size_t __fwritex(const unsigned char *restrict s, size_t l, FILE *restrict f)
{
size_t i=0;
if (!f->wend && __towrite(f)) return 0;
if (l > f->wend - f->wpos) return f->write(f, s, l);
if (f->lbf >= 0) {
/* Match /^(.*\n|)/ */
for (i=l; i && s[i-1] != '\n'; i--);
if (i) {
size_t n = f->write(f, s, i);
if (n < i) return n;
s += i;
l -= i;
}
}
memcpy(f->wpos, s, l);
f->wpos += l;
return l+i;
}
这里又出现了vfprintf
中出现的f->write(f, s, i)
,下面我们就分析这个函数实际底是什么?
我们先找到它的定义prebuilts/lite/sysroot/usr/include/arm-liteos/bits/alltypes.h
:
#if defined(__NEED_FILE) && !defined(__DEFINED_FILE)
typedef struct _IO_FILE FILE;
#define __DEFINED_FILE
#endif
以及third_party/musl/src/internal/stdio_impl.h
:
struct _IO_FILE {
unsigned flags;
unsigned char *rpos, *rend;
int (*close)(FILE *);
unsigned char *wend, *wpos;
unsigned char *mustbezero_1;
unsigned char *wbase;
size_t (*read)(FILE *, unsigned char *, size_t);
size_t (*write)(FILE *, const unsigned char *, size_t); // <--关注它
off_t (*seek)(FILE *, off_t, int);
unsigned char *buf;
size_t buf_size;
FILE *prev, *next;
int fd;
int pipe_pid;
long lockcount;
int mode;
volatile int lock;
int lbf;
void *cookie;
off_t off;
char *getln_buf;
void *mustbezero_2;
unsigned char *shend;
off_t shlim, shcnt;
FILE *prev_locked, *next_locked;
struct __locale_struct *locale;
};
我们再继续寻找stdout
的各个成员值是什么?
可以找到third_party/musl/src/stdio/stdout.c
文件中的:
static unsigned char buf[BUFSIZ+UNGET];
hidden FILE __stdout_FILE = {
.buf = buf+UNGET,
.buf_size = sizeof buf-UNGET,
.fd = 1, // fd 为 1 和多数UNIX系统一样
.flags = F_PERM | F_NORD,
.lbf = '\n',
.write = __stdout_write, // <-- write 成员在这里
.seek = __stdio_seek,
.close = __stdio_close,
.lock = -1,
};
FILE *const stdout = &__stdout_FILE; // <-- stdout 在这里
third_party/musl/src/stdio/__stdout_write.c
文件中:
size_t __stdout_write(FILE *f, const unsigned char *buf, size_t len)
{
struct winsize wsz;
f->write = __stdio_write;
if (!(f->flags & F_SVB) && __syscall(SYS_ioctl, f->fd, TIOCGWINSZ, &wsz))
f->lbf = -1;
return __stdio_write(f, buf, len);
}
这段代码里调用了SYS_ioctl
系统调用,但主体流程是下方的函数__stdio_write
,它的实现在third_party/musl/src/stdio/__stdio_write.c
文件中:
size_t __stdio_write(FILE *f, const unsigned char *buf, size_t len)
{
struct iovec iovs[2] = {
{
.iov_base = f->wbase, .iov_len = f->wpos-f->wbase },
{
.iov_base = (void *)buf, .iov_len = len }
};
struct iovec *iov = iovs;
size_t rem = iov[0].iov_len + iov[1].iov_len;
int iovcnt = 2;
ssize_t cnt;
for (;;) {
cnt = syscall(SYS_writev, f->fd, iov, iovcnt); // <-- 看这里!
if (cnt == rem) {
f->wend = f->buf + f->buf_size;
f->wpos = f->wbase = f->buf;
return len;
}
if (cnt < 0) {
f->wpos = f->wbase = f->wend = 0;
f->flags |= F_ERR;
return iovcnt == 2 ? 0 : len-iov[0].iov_len;
}
rem -= cnt;
if (cnt > iov[0].iov_len) {
cnt -= iov[0].iov_len;
iov++; iovcnt--;
}
iov[0].iov_base = (char *)iov[0].iov_base + cnt;
iov[0].iov_len -= cnt;
}
}
至此,我们看到了printf
函数最终调用到了两个系统调用SYS_ioctl
和SYS_write
。
在上一节中,我们看到printf最终调用到了两个长得像系统调用的函数syscall
和__syscall
。
syscall
的实现在musl
代码仓(third_party/musl
)下搜索:
$ find . -name '*.h' | xargs grep --color -n '\ssyscall('
./kernel/include/unistd.h:198:long syscall(long, ...);
./src/internal/syscall.h:44:#define syscall(...) __syscall_ret(__syscall(__VA_ARGS__))
./include/unistd.h:199:long syscall(long, ...);
可以找到third_party/musl/src/internal/syscall.h
:
#define __syscall(...) __SYSCALL_DISP(__syscall,__VA_ARGS__)
#define syscall(...) __syscall_ret(__syscall(__VA_ARGS__))
这里可以看到它们两者都是宏,而syscall
调用了__syscall
,而__syscall
又调用了__SYSCALL_DISP
,它的实现也在同一个文件中:
#define __SYSCALL_NARGS_X(a,b,c,d,e,f,g,h,n,...) n
#define __SYSCALL_NARGS(...) __SYSCALL_NARGS_X(__VA_ARGS__,7,6,5,4,3,2,1,0,)
#define __SYSCALL_CONCAT_X(a,b) a##b
#define __SYSCALL_CONCAT(a,b) __SYSCALL_CONCAT_X(a,b)
#define __SYSCALL_DISP(b,...) __SYSCALL_CONCAT(b,__SYSCALL_NARGS(__VA_ARGS__))(__VA_ARGS__)
我们以__stdio_write
中调用syscall
处进行分析,即尝试展开syscall(SYS_writev, f->fd, iov, iovcnt)
;
syscall(SYS_writev, f->fd, iov, iovcnt);
=> __syscall_ret(__syscall(SYS_writev, f->fd, iov, iovcnt)) // 展开syscall
=> __syscall_ret(__SYSCALL_DISP(__syscall, SYS_writev, f->fd, iov, iovcnt)); // 展开__syscall
先忽略最外层的 __syscall_ret
,展开__SYSCALL_DISP
部分:
__SYSCALL_DISP(__syscall, SYS_writev, f->fd, iov, iovcnt)
=> __SYSCALL_CONCAT(__syscall, __SYSCALL_NARGS(SYS_writev, f->fd, iov, iovcnt))(SYS_writev, f->fd, iov, iovcnt) // 展开 __SYSCALL_DISP
忽略外层的__SYSCALL_CONCAT
,展开__SYSCALL_NARGS_X
部分:
__SYSCALL_NARGS(SYS_writev, f->fd, iov, iovcnt)
=> __SYSCALL_NARGS_X(SYS_writev, f->fd, iov, iovcnt,7,6,5,4,3,2,1,0,) // 展开 __SYSCALL_NARGS
=> 3 // 展开 __SYSCALL_NARGS_X
// SYS_writev, f->fd, iov, iovcnt 和宏参数 a,b,c,d 对应
// 7,6,5,4 和宏参数 e,f,g,h 对应
// 3 和宏参数 n 对应
// 宏表达式的值为 n 也就是 3,
回到__SYSCALL_CONCAT
展开流程,
__SYSCALL_CONCAT(__syscall, __SYSCALL_NARGS(SYS_writev, f->fd, iov, iovcnt))
=> __SYSCALL_CONCAT(__syscall, 3)
=> __SYSCALL_CONCAT_X(__syscall, 3)
=> __syscall3
再回到__SYSCALL_DISP(__syscall, SYS_writev, f->fd, iov, iovcnt)
展开流程,结果应该是:
__SYSCALL_DISP(__syscall, SYS_writev, f->fd, iov, iovcnt)
=> __syscall3(SYS_writev, f->fd, iov, iovcnt)
__syscall3
的实现这些__syscall[1-7]
的系统调用包装宏定义如下:
#ifndef __scc
#define __scc(X) ((long) (X)) // 转为long类型
typedef long syscall_arg_t;
#endif
#define __syscall1(n,a) __syscall1(n,__scc(a))
#define __syscall2(n,a,b) __syscall2(n,__scc(a),__scc(b))
#define __syscall3(n,a,b,c) __syscall3(n,__scc(a),__scc(b),__scc(c)) // <- 看这里
#define __syscall4(n,a,b,c,d) __syscall4(n,__scc(a),__scc(b),__scc(c),__scc(d))
#define __syscall5(n,a,b,c,d,e) __syscall5(n,__scc(a),__scc(b),__scc(c),__scc(d),__scc(e))
#define __syscall6(n,a,b,c,d,e,f) __syscall6(n,__scc(a),__scc(b),__scc(c),__scc(d),__scc(e),__scc(f))
#define __syscall7(n,a,b,c,d,e,f,g) __syscall7(n,__scc(a),__scc(b),__scc(c),__scc(d),__scc(e),__scc(f),__scc(g))
继续搜索发现有多出匹配,我们关注arch/arm
目录下的文件,因为ARM Cortext A7
是Armv7-A
指令集的32位CPU(如果是Armv8-A
指令集的64位CPU则对应arch/aarch64
下的文件):
static inline long __syscall3(long n, long a, long b, long c)
{
register long r7 __ASM____R7__ = n;
register long r0 __asm__("r0") = a;
register long r1 __asm__("r1") = b;
register long r2 __asm__("r2") = c;
__asm_syscall(R7_OPERAND, "0"(r0), "r"(r1), "r"(r2));
}
这段代码中还有三个宏,__ASM____R7__
、__asm_syscall
和R7_OPERAND
:
#ifdef __thumb__
#define __ASM____R7__
#define __asm_syscall(...) do { \
__asm__ __volatile__ ( "mov %1,r7 ; mov r7,%2 ; svc 0 ; mov r7,%1" \
: "=r"(r0), "=&r"((int){0}) : __VA_ARGS__ : "memory"); \
return r0; \
} while (0)
#else // __thumb__
#define __ASM____R7__ __asm__("r7")
#define __asm_syscall(...) do { \
__asm__ __volatile__ ( "svc 0" \
: "=r"(r0) : __VA_ARGS__ : "memory"); \
return r0; \
} while (0)
#endif // __thumb__
#ifdef __thumb2__
#define R7_OPERAND "rI"(r7)
#else
#define R7_OPERAND "r"(r7)
#endif
它们有两个实现版,分别对应于编译器THUMB
选项的开启和关闭。这两种选项条件下的代码流程基本一致,以下仅以未开启THUMB
选项为例进行分析。这两个宏展开后的__syscall3
函数内容为:
static inline long __syscall3(long n, long a, long b, long c)
{
register long r7 __asm__("r7") = n; // 系统调用号
register long r0 __asm__("r0") = a; // 参数0
register long r1 __asm__("r1") = b; // 参数1
register long r2 __asm__("r2") = c; // 参数2
do {
\
__asm__ __volatile__ ( "svc 0" \
: "=r"(r0) : "r"(r7), "0"(r0), "r"(r1), "r"(r2) : "memory"); \
return r0; \
} while (0);
}
这里最后的一个内嵌汇编比较复杂,它符合如下格式(具体细节可以查阅gcc内嵌汇编文档的扩展汇编说明):
asm asm-qualifiers ( AssemblerTemplate
: OutputOperands
[ : InputOperands
[ : Clobbers ] ])
汇编模板为:"svc 0"
,
输出参数部分为:"=r"(r0)
,输出寄存器为r0
输入参数部分为:"r"(r7), "0"(r0), "r"(r1), "r"(r2)
,输入寄存器为r7
,r0
,r1
,r2
,("0"
的含义是,这个输入寄存器必须和输出寄存器第0个位置一样)
Clobber部分为:"memory"
这里我们只需要记住:系统调用号存放在r7
寄存器,参数存放在r0
,r1
,r2
,返回值最终会存放在r0
中;
SVC
指令,ARM Cortex A7手册 的解释为:
The SVC instruction causes a Supervisor Call exception. This provides a mechanism for
unprivileged software to make a call to the operating system, or other system component that
is accessible only at PL1.
翻译过来就是说
SVC指令会触发一个“特权调用”异常。这为非特权软件调用操作系统或其他只能在PL1级别访问的系统组件提供了一种机制。
详细的指令说明在
到这里,我们分析了鸿蒙系统上应用程序如何进入内核态,主要分析的是musl libc的实现。
liteos-a
内核的系统调用实现分析既然SVC
能够触发一个异常,那么我们就要看看liteos-a
内核是如何处理这个异常的。
在ARM架构参考手册中,可以找到中断向量表的说明:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mGzf2Eqv-1601526018828)(https://oscimg.oschina.net/oscnet/up-54c55d1dcf3c8ffb5132f93643f9b06f7b3.png “Cortex-A7中断向量表”)]
可以看到SVC中断向量的便宜地址是0x08
,我们可以在kernel/liteos_a/arch/arm/arm/src/startup
目录的reset_vector_mp.S
文件和reset_vector_up.S
文件中找到相关汇编代码:
__exception_handlers:
/*
*Assumption: ROM code has these vectors at the hardware reset address.
*A simple jump removes any address-space dependencies [i.e. safer]
*/
b reset_vector
b _osExceptUndefInstrHdl
b _osExceptSwiHdl
b _osExceptPrefetchAbortHdl
b _osExceptDataAbortHdl
b _osExceptAddrAbortHdl
b OsIrqHandler
b _osExceptFiqHdl
PS: kernel/liteos_a/arch/arm/arm/src/startup
目录有两个文件reset_vector_mp.S
文件和reset_vector_up.S
文件分别对应多核和单核编译选项:
ifeq ($(LOSCFG_KERNEL_SMP), y)
LOCAL_SRCS += src/startup/reset_vector_mp.S
else
LOCAL_SRCS += src/startup/reset_vector_up.S
endif
SVC
中断处理函数上面的汇编代码中可以看到,_osExceptSwiHdl
函数就是SVC
异常处理函数,具体实现在kernel/liteos_a/arch/arm/arm/src/los_hw_exc.S
文件中:
@ Description: Software interrupt exception handler
_osExceptSwiHdl:
SUB SP, SP, #(4 * 16) @ 栈增长
STMIA SP, {R0-R12} @ 保存R0-R12寄存器到栈上
MRS R3, SPSR @ 移动SPSR寄存器的值到R3
MOV R4, LR
AND R1, R3, #CPSR_MASK_MODE @ Interrupted mode
CMP R1, #CPSR_USER_MODE @ User mode
BNE OsKernelSVCHandler @ Branch if not user mode
@ we enter from user mode, we need get the values of USER mode r13(sp) and r14(lr).
@ stmia with ^ will return the user mode registers (provided that r15 is not in the register list).
MOV R0, SP
STMFD SP!, {R3} @ Save the CPSR
ADD R3, SP, #(4 * 17) @ Offset to pc/cpsr storage
STMFD R3!, {R4} @ Save the CPSR and r15(pc)
STMFD R3, {R13, R14}^ @ Save user mode r13(sp) and r14(lr)
SUB SP, SP, #4
PUSH_FPU_REGS R1
MOV FP, #0 @ Init frame pointer
CPSIE I @ Interrupt Enable
BLX OsArmA32SyscallHandle
CPSID I @ Interrupt Disable
POP_FPU_REGS R1
ADD SP, SP,#4
LDMFD SP!, {R3} @ Fetch the return SPSR
MSR SPSR_cxsf, R3 @ Set the return mode SPSR
@ we are leaving to user mode, we need to restore the values of USER mode r13(sp) and r14(lr).
@ ldmia with ^ will return the user mode registers (provided that r15 is not in the register list)
LDMFD SP!, {R0-R12}
LDMFD SP, {R13, R14}^ @ Restore user mode R13/R14
ADD SP, SP, #(2 * 4)
LDMFD SP!, {PC}^ @ Return to user
这段代码的注释较为清楚,可以看到,内核模式会继续调用OsKernelSVCHandler
,用户模式会继续调用OsArmA32SyscallHandle
函数;
OsArmA32SyscallHandle
函数我们这里分析的流程是从用户模式进入的,所以调用的是OsArmA32SyscallHandle
,它的实现位于kernel/liteos_a/syscall/los_syscall.c
文件:
/* The SYSCALL ID is in R7 on entry. Parameters follow in R0..R6 */
LITE_OS_SEC_TEXT UINT32 *OsArmA32SyscallHandle(UINT32 *regs)
{
UINT32 ret;
UINT8 nArgs;
UINTPTR handle;
UINT32 cmd = regs[REG_R7];
if (cmd >= SYS_CALL_NUM) {
PRINT_ERR("Syscall ID: error %d !!!\n", cmd);
return regs;
}
if (cmd == __NR_sigreturn) {
OsRestorSignalContext(regs);
return regs;
}
handle = g_syscallHandle[cmd]; // 得到实际系统调用处理函数
nArgs = g_syscallNArgs[cmd / NARG_PER_BYTE]; /* 4bit per nargs */
nArgs = (cmd & 1) ? (nArgs >> NARG_BITS) : (nArgs & NARG_MASK);
if ((handle == 0) || (nArgs > ARG_NUM_7)) {
PRINT_ERR("Unsupport syscall ID: %d nArgs: %d\n", cmd, nArgs);
regs[REG_R0] = -ENOSYS;
return regs;
}
switch (nArgs) {
// 以下各个case是实际函数调用
case ARG_NUM_0:
case ARG_NUM_1:
ret = (*(SyscallFun1)handle)(regs[REG_R0]);
break;
case ARG_NUM_2:
case ARG_NUM_3:
ret = (*(SyscallFun3)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2]);
break;
case ARG_NUM_4:
case ARG_NUM_5:
ret = (*(SyscallFun5)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3],
regs[REG_R4]);
break;
default:
ret = (*(SyscallFun7)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3],
regs[REG_R4], regs[REG_R5], regs[REG_R6]);
}
regs[REG_R0] = ret; // 返回值填入R0
OsSaveSignalContext(regs);
/* Return the last value of curent_regs. This supports context switches on return from the exception.
* That capability is only used with theSYS_context_switch system call.
*/
return regs;
}
这个函数中用到了个全局数组g_syscallHandle
和g_syscallNArgs
,它们的定义以及初始化函数也在同一个文件中:
static UINTPTR g_syscallHandle[SYS_CALL_NUM] = {
0};
static UINT8 g_syscallNArgs[(SYS_CALL_NUM + 1) / NARG_PER_BYTE] = {
0};
void SyscallHandleInit(void)
{
#define SYSCALL_HAND_DEF(id, fun, rType, nArg) \
if ((id) < SYS_CALL_NUM) { \
g_syscallHandle[(id)] = (UINTPTR)(fun); \
g_syscallNArgs[(id) / NARG_PER_BYTE] |= \
((id) & 1) ? (nArg) << NARG_BITS : (nArg); \
}
#include "syscall_lookup.h"
#undef SYSCALL_HAND_DEF
}
其中SYSCALL_HAND_DEF
宏的对齐格式我做了一点调整。
从g_syscallNArgs
成员赋值以及定义的地方,能看出它的每个UINT8
成员被用来存放两个系统调用的参数个数,从而实现更少的内存占用;
syscall_lookup.h
文件和los_syscall.c
位于同一目录,它记录了系统调用函数对照表,我们仅节取一部分:
SYSCALL_HAND_DEF(__NR_read, SysRead, ssize_t, ARG_NUM_3)
SYSCALL_HAND_DEF(__NR_write, SysWrite, ssize_t, ARG_NUM_3) // <-- 我们要跟踪的 write 在这里
SYSCALL_HAND_DEF(__NR_open, SysOpen, int, ARG_NUM_7)
SYSCALL_HAND_DEF(__NR_close, SysClose, int, ARG_NUM_1)
SYSCALL_HAND_DEF(__NR_creat, SysCreat, int, ARG_NUM_2)
SYSCALL_HAND_DEF(__NR_unlink, SysUnlink, int, ARG_NUM_1)
#ifdef LOSCFG_KERNEL_DYNLOAD
SYSCALL_HAND_DEF(__NR_execve, SysExecve, int, ARG_NUM_3)
#endif
看到这里,write
系统调用的内核函数终于找到了——SysWrite
。
到此,我们已经知道了liteos-a
的系统调用机制是如何实现的。
SysWrite
函数的实现位于kernel/liteos_a/syscall/fs_syscall.c
文件:
ssize_t SysWrite(int fd, const void *buf, size_t nbytes)
{
int ret;
if (nbytes == 0) {
return 0;
}
if (!LOS_IsUserAddressRange((vaddr_t)(UINTPTR)buf, nbytes)) {
return -EFAULT;
}
/* Process fd convert to system global fd */
fd = GetAssociatedSystemFd(fd);
ret = write(fd, buf, nbytes); // <-- ??似曾相识??
if (ret < 0) {
return -get_errno();
}
return ret;
}
它又调用了write
?但是这一次是内核空间的write
,不再是 musl libc,经过一番搜索,我们可以找到另一个文件third_party/NuttX/fs/vfs/fs_write.c
中的write
:
ssize_t write(int fd, FAR const void *buf, size_t nbytes) {
#if CONFIG_NFILE_DESCRIPTORS > 0
FAR struct file *filep;
if ((unsigned int)fd >= CONFIG_NFILE_DESCRIPTORS)
#endif
{
/* Write to a socket descriptor is equivalent to send with flags == 0 */
#if defined(LOSCFG_NET_LWIP_SACK)
FAR const void *bufbak = buf;
ssize_t ret;
if (LOS_IsUserAddress((VADDR_T)(uintptr_t)buf)) {
if (buf != NULL && nbytes > 0) {
buf = malloc(nbytes);
if (buf == NULL) {
/* 省略 错误处理 代码 */ }
if (LOS_ArchCopyFromUser((void*)buf, bufbak, nbytes) != 0) {
/* 省略 */}
}
}
ret = send(fd, buf, nbytes, 0); // 这个分支是处理socket fd的
if (buf != bufbak) {
free((void*)buf);
}
return ret;
#else
set_errno(EBADF);
return VFS_ERROR;
#endif
}
#if CONFIG_NFILE_DESCRIPTORS > 0
/* The descriptor is in the right range to be a file descriptor... write
* to the file.
*/
if (fd <= STDERR_FILENO && fd >= STDIN_FILENO) {
/* fd : [0,2] */
fd = ConsoleUpdateFd();
if (fd < 0) {
set_errno(EBADF);
return VFS_ERROR;
}
}
int ret = fs_getfilep(fd, &filep);
if (ret < 0) {
/* The errno value has already been set */
return VFS_ERROR;
}
if (filep->f_oflags & O_DIRECTORY) {
set_errno(EBADF);
return VFS_ERROR;
}
if (filep->f_oflags & O_APPEND) {
if (file_seek64(filep, 0, SEEK_END) == -1) {
return VFS_ERROR;
}
}
/* Perform the write operation using the file descriptor as an index */
return file_write(filep, buf, nbytes);
#endif
}
找到这段代码,我们知道了:
liteos-a
的vfs是在NuttX
基础上实现的,NuttX是一个开源RTOS项目;liteos-a
的TCP/IP协议栈是基于lwip
的,lwip也是一个开源项目;write
分为两个分支,socket fd调用lwip的send
,另一个分支调用file_write
;至于,file_write
如何调用到存储设备驱动程序,则是更底层的实现了,本文不在继续分析。
本文内容均是基于鸿蒙系统开源项目OpenHarmony源码静态分析所整理,没有进行实际的运行环境调试,实际执行过程可能有所差异,希望发现错误的读者及时指正。文中所有路径均为整个openharmony源码树上的相对路径(而非liteos源码相对路径)。
ARM Architecture Reference Manual ® ARMv7-A and ARMv7-R edition: https://developer.arm.com/docs/ddi0406/latest
gcc内嵌汇编文档的扩展汇编说明:https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Extended-Asm.html#Extended-Asm
鸿蒙官方文档“内核子系统”:https://gitee.com/openharmony/docs/blob/master/readme/%E5%86%85%E6%A0%B8%E5%AD%90%E7%B3%BB%E7%BB%9FREADME.md
鸿蒙官方文档“ OpenHarmony轻内核”:https://gitee.com/openharmony/docs/blob/master/kernel/Readme-CN.md
NuttX:https://nuttx.apache.org/
Lwip:https://savannah.nongnu.org/projects/lwip/
本文在oschina征文活动中首发,转载请著名出处:https://my.oschina.net/u/737017/blog/4612847
本文参与了「解读鸿蒙源码」技术征文,欢迎正在阅读的你也加入。