大家好,我是云祁,好久不见~
今天来和大家聊聊数仓常见的一些建模方法和具体的实例演示,一起来看看吧。
在开始今天的话题之前,我们不妨思考下,到底为什么需要进行数据建模?
随着从IT时代到DT时代的跨越,数据开始出现爆发式的增长,这当中产生的价值也是不言而喻。如何将这些数据进行有序、有结构地分类组织存储,是我们所有数据从业者都要面临的一个挑战。
如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置,而不是乱糟糟的堆砌在一起。
大数据的数仓建模正是通过建模的方法,更好的组织、存储数据,以便在性能、成本、效率和数据质量之间找到最佳平衡点,一般我们会从以下面四点考虑:
因此,毋庸置疑,大数据系统、数据平台都需要数据模型方法来帮助更好的组织和存储数据,数据建模的工作,也正是围绕上述四个指标取得最佳的平衡而努力。
OLTP系统通常面向的主要数据操作是随机读写,主要采用3NF的实体关系模型存储数据,从而在事务处理中解决数据的冗余和一致性问题。
OLAP系统面向的主要数据操作是批量读写,事务处理中的一致性不是OLAP所关注的,其主要关注数据的整合,以及在一次性的复杂大数据查询和处理的性能,因此它需要采用不同的建模方法,例如维度建模。
如果大家想进一步了解 OLAP系统,可以学习这篇文章: 关于OLAP数仓,这大概是史上最全面的总结!
数据仓库本质是从数据库衍生出来的,所以数据仓库的建模也是不断衍生发展的。
从最早的借鉴关系型数据库理论的范式建模,到逐渐提出维度建模等等,越往后建模的要求越高,越需满足3NF、4NF等。但是对于数据仓库来说,目前主流还是维度建模,会夹杂着范式建模。
数据仓库建模方法论可分为:E-R模型、维度模型、Data Vault模型、Anchor模型。
将事物抽象为“实体”、“属性”、“关系”来表示数据关联和事物描述,这种对数据的抽象建模通常被称为E-R实体关系模型。
数据仓库之父 Bill Inmon 提出的建模方法,从全企业的高度设计一个3NF模型,用实体关系(Entity Relationship)模型来描述企业业务,满足3NF。
数据仓库的3NF与OLTP系统中的3NF的区别在于,它是站在企业角度面向主题的抽象,而不是针对某个具体的业务流程。
采用 E-R模型建设数据仓库模型的出发点是整合数据,对各个系统的数据以整个企业角度按主题进行相似的组合和合并,并进行一致性处理,为数据分析决策服务,但是并不能直接用于分析决策。
作为一种标准的数据建模方案,它的实施周期非常长,一致性和扩展性比较好,能经得起时间的考验。但是随着企业数据的高速增长、复杂化,数仓如果全部使用E-R模型进行建模就显得越来越不适合现代化复杂、多变的业务组织,因此一般只有在数仓底层ODS、DWD会采用E-R关系模型进行设计。
E-R建模步骤分为三个阶段:
E-R模型在实践中最典型的代表是 Teradata 公司基于金融业务发布的 FS-LDM (Financial Services Logical Data Model ),它通过对金融业务的高度抽象和总结,将金融业务划分为10大主题,企业基于此模型适当调整和扩展就能快速实施落地。
维度模型是数据仓库领域 Ralph Kimball 大师倡导的,是数据仓库工程领域最流行的数仓建模经典。
维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。
其中典型的代表就是使用星型模型,以及在一些特殊场景下使用的雪花模型。
其设计主要分为以下几个步骤:
在 Ralph Kimball 提出对数据仓库维度建模,我们将数据仓库中的表划分为事实表、维度表两种类型。
针对维度建模中事实表和维度表的设计,之前有详细介绍过,感兴趣的同学可以看:维度建模技术实践——深入事实表 、维度建模的灵魂所在——维度表设计。
在这里,我就以常见的电商场景为例:在一次购买的事件中,涉及主体包括客户、商品、商家,产生的可度量值会包括商品数量、金额、件数等。
事实表根据粒度的角色划分不同,可分为事务事实表、周期快照事实表、累积快照事实表等。
我们继续就上述的电商场景,聊聊在维表设计时需要关注的一些东西:
接下来就是针对维度建模按照数据的组织类型,可以划分为星型模型、雪花模型、星座模型。
2. 雪花模型,在星型模型的基础上,维度表上又关联了其他维度表。这种模型维护成本高,性能方面会差一些。
3. 星座模型,是对星型模型的扩展延伸,多张事实表共享维度表。实际上数仓模型建设后期,大部分维度建模都是星座模型。
简单总结下就是:
Data Vault 是 Dan Linstedt 发起创建的一种模型,它是 E-R 模型的衍生,其设计的出发点也是为了实现数据的整合,但不能直接用于数据分析决策。
它强调建立一个可审计的基础数据层,也就是强调数据的历史性、可追溯性和原子性,而不要求对数据进行过度的一致性处理和整合。
同时它基于主题概念将企业数据进行结构化组织,并引入了更进一步的范式处理来优化模型,以应对源系统变更的扩展性。 Data Vault 型由以下几部分组成:
Data Vault 模型比 E-R 模型更容易设计和产出,它的 ETL 加工可实现配置化。我们可以将 Hub 想象成人的骨架,那么 Link 就是连接骨架的韧带,而 SateIIite 就是骨架上面的血肉。
Anchor 对 Data Vault 模型做了进一步的规范化处理,它的核心思想是所有的扩展只是添加而不是修改,因此将模型规范到6NF,基本变成了 k-v 结构化模型。
由于过度规范化,使用中牵涉到太多的Join操作,这里我们就仅作了解。
以上为四种基本的建模方法,目前主流建模方法为: E-R模型、维度模型。
E-R模型通常用于OLTP数据库建模,应用到构建数仓时就更偏向于数据整合,站在企业整体考虑,将各个系统的数据按相似性一致性、合并处理,为数据分析、决策服务,但并不便于直接用来支持分析。
维度建模是面向分析场景而生,针对分析场景构建数仓模型;重点关注快速、灵活的解决分析需求,同时能够提供大规模数据的快速响应性能。针对性强,主要应用于数据仓库构建和OLAP引擎低层数据模型。
数据仓库模型的设计是灵活的,不会局限于某一种模型,需要以实际的需求场景为导向,需要兼顾灵活性、可扩展性以及技术可靠性及实现成本。
我是「云祁」,一枚热爱技术、会写诗的大数据开发猿,欢迎大家关注呀!
Respect ~