- 0基础学Python第八天
RUIOU_
python机器学习0基础开发语言
1.程序报错:程序在哪一行报错之后,后面的程序都不会被执行。(1)异常类型:IndexError——索引错误,ZeroDivisionError——除零错误FileNotFoundError——找不到文件错误,TypeError——类型错误等2.捕捉异常:格式——try,except语句:try:可能会产生报错的代码except你想捕捉错误的名字(异常类型):错误发生后你想相应执行的操作excep
- OpenCV图像基础
天行者@
opencv人工智能计算机视觉
OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库OpenCV最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持OpenCV可用于开发实时的图
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- 【机械视觉】C#+VisionPro联合编程———【五、硬币检测小项目实现(C#+VisionPro联合编程和csv文件格式操作)】
_Csharp
c#开发语言
【机械视觉】C#+VisionPro联合编程———【五、硬币检测小项目实现(C#+VisionPro联合编程和csv文件格式操作)】项目介绍总共有十二张检测的图片,当点击检测按钮时检测当前展示的图片并且将检测效果展示在表格中,当点击上一页或下一页时换检测图片,点击保存本地时通过csv文件格式将表格数据保存,当下一次运行时将数据读取出来并且展示在表格中。此项目通过异步进行优化,在加载时改变了以往卡顿
- CMOS 图像传感器市场趋势和新兴应用
沧海一升
CMOS图像传感器成像CISsensor图像传感器image
2024年底,Yole举办了一场网络研讨会,有关CMOS图像传感器市场的最新趋势和新兴应用,本次网络研讨会由EdgeAI+Vision联盟联合举办,讨论了CIS供应商如何专注于增强传感器功能,以及如何将其产品组合转向更高潜在价值的市场。除此外还探讨了神经形态、光学超表面、短波红外和多光谱成像等新兴传感模式将如何在未来补充CMOS图像传感器,在某些情况下甚至取代CMOS图像传感器。可以在下面链接看到
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- 扩散 Transformer 策略:用于通才视觉-语言-动作学习的规模化扩散 Transformer
三谷秋水
计算机视觉大模型智能体transformer深度学习计算机视觉语言模型人工智能机器学习
25年2月来自上海AI实验室、浙大、香港中文大学、北大、商汤科技、清华和中科院香港科学创新研究院的论文“DiffusionTransformerPolicy:ScalingDiffusionTransformerforGeneralistVision-Language-ActionLearning”。最近,在多样化的机器人数据集上进行预训练的大型视觉-语言-动作模型,已展示出利用少量域内数据泛化到
- 最近学习感悟总结
格蕾丝重度依赖
学习
图像识别技术与应用学习到了torchvision、imageFolder以及可视化工具(TensorBoard等)图像分类:将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界通用的多类别图像分类子类细粒度图像分类实例级图像分类图像分类评估指标--混淆矩阵(精确率;准确率;召回率;F1_Score;P-R曲线)模型基本概念-网络的深度(网络的深度;网络的宽度)图像分类中
- 【安装ollama】
放飞自我的Coder
随手笔记ollama
#安装1.参考官网安装2.使用modelscope镜像#使用命令行前,请确保已经通过pipinstallmodelscope安装ModelScope。modelscopedownload--model=modelscope/ollama-linux--local_dir./ollama-linux--revisionv0.5.7#运行ollama安装脚本(无需联网)cdollama-linuxsu
- 第N2周:构建词典
OreoCC
NLP
本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660本周任务:使用N1周的.txt文件构建词典,停用词请自定义1.导入数据fromtorchtext.vocabimportbuild_vocab_f
- visionPro8.2r紧急许可重复利用方法
吾与谁归in
视觉编辑器
VisionPro安装,个人学习使用VisionPro安装,紧急许可重复使用方法,目前仅是8.2r,在这备份一下。建议首次安装时进行备份紧急激活许可(1-4次激活都可以,第五次凉凉)。1.以管理员身份运行CognexSoftwareLicensingCenter软件2、配置连接类型一定要设置离线3,安装紧急许可这里第一个显示broken是因为第一次紧急许可过期了,第一个显示ok是新激活的紧急许可。
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- Git前言(版本控制)
Starbright.
Gitgit
1.Git目前世界上最先进的分布式版本控制系统。git官网:https://git-scm.com/2.版本控制2.1什么是版本控制版本控制(Revisioncontrol)是一种在开发的过程中用于管理我们对文件、目录或工程等内容修改历史,方便查看更改历史记录备份以便恢复以前的版本的软件工程技术。实现跨区域多人协同开发追踪和记载一个或者多个文件的历史记录组织和保护你的源代码和文档统计工作量并行开发
- 基于PyTorch的深度学习6——数据处理工具箱2
Wis4e
深度学习pytorch人工智能
torchvision有4个功能模块:model、datasets、transforms和utils。主要介绍如何使用datasets的ImageFolder处理自定义数据集,以及如何使用transforms对源数据进行预处理、增强等。下面将重点介绍transforms及ImageFolder。transforms提供了对PILImage对象和Tensor对象的常用操作。1)对PILImage的常
- 3.10 项目总结
不要不开心了
pyqt深度学习机器学习数据挖掘人工智能
今天的项目是一个使用PyTorch框架构建和训练神经网络的实例,旨在实现手写数字识别。以下是项目的总结、内容分析以及优化建议:项目总结1.目标:使用神经网络对MNIST数据集中的手写数字进行分类。2.步骤:-数据加载和预处理。-构建神经网络模型。-定义损失函数和优化器。-训练模型并评估其性能。-可视化训练结果。内容分析1.数据加载和预处理:-使用`torchvision.datasets`加载MN
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- Vision Transformer 分类水果图片集 Python 代码(可训练自己数据集)
Illusionna.
transformer深度学习人工智能
代码链接:https://github.com/Illusionna/ComputerVision/tree/main/EfficientTransformerArepositoryforViT.ContributetoIllusionna/TransformerdevelopmentbycreatinganaccountonGitHub.https://github.com/Illusionna
- “面面俱到”!人脸活体检测让应用告别假面攻击
harmonyos
随着人脸识别技术在金融、医疗等多个领域的加速落地,网络安全、信息泄露等问题愈为突出,用户对应用稳定性和安全性的要求也更为严格。HarmonyOSSDK场景化视觉服务(VisionKit)提供人脸动作活体检测能力,增强对于非活体攻击的防御能力和活体通过率。在投资理财、在线支付等高风险金融服务场景中,通过检测用户的组合动作等来验证用户为真实活体操作,抵御攻击,提高安全性,降低业务风险,全方位保障用户体
- Java开发高级工程师面试,etcd:一款比Redis更骚的分布式锁的实现方式
m0_60732427
程序员面试java后端
Watch机制支持Watch某个固定的key,也支持Watch一个范围(前缀机制)。当被Watch的key或范围发生变化,客户端将收到通知;在实现分布式锁时,如果抢锁失败,可通过Prefix机制返回的Key-Value列表获得Revision比自己小且相差最小的key(称为pre-key),对pre-key进行监听,因为只有它释放锁,自己才能获得锁,如果Watch到pre-key的DELETE事件
- 构建一个完整的视觉Transformer(ViT)图像分类模型 VIT (vision transformer)图像分类
Jackie_AI
transformer分类深度学习
构建一个完整的视觉Transformer(ViT)图像分类模型VIT(visiontransformer)图像分类根据提供的截图内容,我们可以看到一个名为VitNet的视觉Transformer(VisionTransformer,简称ViT)网络架构的部分代码。下面我将提供完整的VitNet类以及相关的辅助函数和训练流程示例代码。计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码
- 数字识别项目
不要天天开心
机器学习人工智能深度学习算法
集成算法·Bagging·随机森林构造树模型:由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。集成算法·Stacking·堆叠:很暴力,拿来一堆直接上(各种分类器都来了)·可以堆叠各种各样的分类器(KNN,SVM,RF等等)·分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练实现神经网络实例利用PyTorch内置函数mnist下载数据。·利用torchvision对数据进
- OpenManus:快速复刻Manus项目的技术路径与实施策略
花生糖@
manusopenmanusAI开源人工智能
一、敏捷复刻的工程化基础1.1架构解耦设计OpenManus采用"微内核+插件"架构模式,其核心引擎仅保留智能体调度、消息路由等基础功能,将模型接入、任务处理等模块进行组件化封装。这种设计使得复刻项目时能够快速剥离非必要模块,例如:模块替换:通过修改config.toml的llm配置段,可在1小时内完成从GPT-4到Claude3的模型切换功能裁剪:删除vision模块相关代码及配置项即可实现15
- Python 3.13 的改进
CS创新实验室
Pythonpython开发语言
Python3.13的改进Python3.13是一个充满新功能和改进的优秀版本,已经有大量文章详细介绍了发布说明。因此,本文不会讨论那些已经耳熟能详的内容,只就几个不鲜为人知的改进给予介绍。让调试变得更好尽管PDB的操作界面简陋,但它毕竟简单。之前,在PDB中会遇到这样的问题:try:1/0exceptZeroDivisionErrorase:breakpoint()那么,当读取e时会发生什么:-
- 电阻在电路中的不同作用及阻值选择详述
DeepGpt
器件选型硬件工程
一、电阻的常见作用限流(CurrentLimiting)描述:限制通过电路或元件的电流,保护器件(如LED)。特点:根据欧姆定律(R=V/I)计算阻值。阻值选择:取决于电流大小和电压降。分压(VoltageDivision)描述:与其他电阻串联,分担电压,提供特定电平。特点:常用于电位器或信号调整。阻值选择:根据分压比(Vout=Vin×R2/(R1+R2))计算。上拉/下拉(Pull-up/Pu
- 教学使用python实现某某短剧下载实现流程
阴-影
python开发语言
#短剧爬取实现流程笔记#第一步:打开浏览器,搜索快手进入官网在官网里面找到小剧场,点击进去,然后右键检查或者F12打开开发者工具,刷新一下网页,点击网络面板,英文的就是(network)#第二部在里面找json数据,每一个都点击一下,看预览数据visionTubeEpisode是否有这个字典,在里面找到photo在里面找到photoUrl,然后浏览器地址栏请求一下网址,看是否是我们想要的#第三步#
- ZeroDivisionError: float division by zero
想念@思恋
pytorchjava开发语言
更新学习率时,分母为0.0,即group[‘t_total’]=0.0#报错BERT/optimization.py",line169,insteplr_scheduled=group['lr']*schedule_fct(state['step']/(group['t_total']),group['warmup'])ZeroDivisionError:floatdivisionbyzero解决
- pytorch安装记录
cy010124
pytorch人工智能python
在conda中创建环境(condacreate-npytorch1python=3.12),接着进入pytorch1环境(condaactivatepytorch1)。使用官网命令安装pytorch,第一次安装显示python版本过高,torchaudio和torchvision不支持3.12,python3.10可以同时满足,于是准备换成3.10。删除环境,首先切换到base环境(condaac
- 3.6手写数字识别项目
不要不开心了
pytorch神经网络人工智能机器学习深度学习
今天的内容为手写数字识别项目1.数据准备:-使用`torchvision.datasets`加载MNIST数据集。-通过`transforms.Compose`对数据进行预处理,包括转换为张量和归一化。-使用`DataLoader`创建训练和测试数据集的生成器。2.可视化源数据:-使用`matplotlib`库可视化测试集中的部分图像,并显示其对应的真实标签。3.构建模型:-定义一个包含两个隐藏层
- 图像采集卡的核心组成与功能
qq_52609913
计算机视觉
图像采集卡作为连接图像源与计算机的关键硬件,其核心功能是将图像信号转换为数字信号以供处理。以下是对其各要素的系统性总结:1.核心组成与功能**图像输入接口:**支持多种接口(如HDMI、CameraLink、GigEVision等),需根据应用场景选择。例如,CameraLink适合工业高速传输,而GigEVision适用于远距离需求。**模数转换(ADC):**仅模拟采集卡需此模块,将模拟信号数
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓