- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- switch 二分查找
01292520
C++学习记录c++
template//在有序向量区间[lo,hi)内查找元素estaticRankbinSearch(T*A,Tconst&e,Ranklo,Rankhi){while(lo>1;//以中点为轴点//使用一个临时变量来存储比较结果,方便在switch中使用intcomparisonResult=(e
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- Chainlink 预言机的原理解析
Chainlink资讯
预言机Chainlink智能合约
本文来自于8月19日Chainlink开发者社区中国负责人Frank,在DAppLearning分享会上对于Chainlink预言机的原理的讲解,以下是这节分享会的总结内容。有兴趣的小伙伴可以结合视频一起学习:为什么区块链无法主动获取外界数据区块链的特点区块链是一个封闭的确定性系统,每一笔交易都需要不同节点共识,只有超过一定数量的节点共识成功,交易才会被真正认可,并写入区块链。因为对于外部API的
- 一文带大家了解RARR(Retrieve-Read-Rerank) 和 RAG(Retrieval-Augmented Generation)的区别
测试开发Kevin
AI相关人工智能ai
RARR(Retrieve-Read-Rerank)和RAG(Retrieval-AugmentedGeneration)是两种不同的检索增强生成技术,核心差异在于流程设计、优化目标及适用场景。以下从多个维度对比两者的区别:1.流程架构与核心步骤RAG(检索增强生成)流程:检索(Retrieve):从外部知识库中检索与查询相关的文档或文本片段。生成(Generate):将检索到的内容与原始查询拼接
- 游戏引擎导论
方块砖
图形学
本系列文章由zhmxy555(毛星云)编写,转载请注明出处。文章链接:http://blog.csdn.net/zhmxy555/article/details/8250057作者:毛星云(浅墨)邮箱:happylifemxy@163.com一、学完DirectX,我们该干什么?浅墨觉得,历代DirectX龙书的作者FrankLuna在龙书中忽视了非常重要的一方面内容的讲解,那就是就是学完了Dir
- 从零学习大模型(六)-----LoRA(上)
懒惰才能让科技进步
大语言模型gpt-3人工智能深度学习chatgpt语言模型
LoRA简介LoRA(Low-RankAdaptation)是一种参数高效的微调技术,旨在降低微调大规模预训练模型的存储和计算成本。**其核心思想是通过对模型的特定参数进行低秩分解,仅对少量附加参数进行训练,从而完成任务适应,而无需更新整个模型的权重。**这种方法通过引入额外的低秩矩阵来适应新的任务,保持了预训练模型的核心知识,使其更具灵活性和高效性。在大规模语言模型的实际应用中,微调需要耗费巨大
- RAG数据嵌入和重排序:如何选择合适的模型
从零开始学习人工智能
深度学习
RAG数据嵌入和重排序:如何选择合适的模型在自然语言处理(NLP)领域,Retrieval-AugmentedGeneration(RAG)模型已经成为一种强大的工具,用于结合检索和生成能力来处理复杂的语言任务。RAG模型的核心在于两个关键步骤:数据嵌入(Embedding)和重排序(Re-ranking)。这两个步骤的选择和优化对于模型的性能至关重要。本文将探讨如何选择合适的模型来实现高效的数据
- 第二十五篇 SQL优化杀手锏:用分析函数让你的查询快如闪电
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、初识分析函数:外卖骑手的一天1.1真实工作场景二、分析函数三板斧(超直观对比表)三、手把手教学:5大核心函数详解️3.1排名三剑客(班级成绩单案例)3.1.1ROW_NUMBER():唯一学号式排名3.1.2RANK():运动会颁奖式排名3.1.3DENSE_RANK():电梯楼层式排名3.2时间旅行函数(股票分析案例)3.3滑动窗口函数(疫情数据分析)四、性能优化三大绝招(让老板眼前一亮
- LORA 微调大模型:从入门到入土
大模型.
人工智能开发语言gptagi架构大模型
在当今人工智能领域,预训练的大模型已经成为推动技术发展的核心力量。然而,在实际项目中,我们往往会发现这些预训练模型虽然强大,但直接就去应用于一些特定的任务时,往往无法完全满足需求。这时,微调就成为了必不可少的一步。而在众多微调方法中,LORA全名(Low-RankAdaptation)以高效性和实用性,逐渐成为了许多开发者训练模型的首选项。作为一名小有经验的咸鱼开发者,我深知在实际项目中高效的进行
- 使用FastAPI部署bge-base和bge-reranker
MoyiTech
fastapipython开发语言RAGrerank
最近在做RAG项目,会频繁使用到本地embedding模型和rerank模型,但是每次跑demo都要用10来秒加载模型,非常慢,所以就封装了接口用于直接调用importosimportnumpyasnpimportloggingimportuvicornimportdatetimefromfastapiimportFastAPI,Security,HTTPExceptionfromfastapi.
- Python扑克牌小游戏
Small踢倒coffee_氕氘氚
笔记经验分享
1.游戏规则概述玩家人数:3人牌数:一副扑克牌,共54张(包括大小王)发牌:每人17张牌,剩余3张作为底牌出牌规则:玩家依次出牌,必须出比上家更大的牌型,或者选择不出胜利条件:先出完手中牌的玩家获胜2.游戏框架设计2.1牌型定义classCard:def__init__(self,suit,rank):self.suit=suit#花色:♠,♥,♣,♦self.rank=rank#牌面:3,4,5
- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- redis的zset命令总结
脱氨垃圾
Redisredis数据库database
redis的zset命令总结文章目录redis的zset命令总结1.zadd2.zrem3.zcard4.zrange5.zrevrange6.zrangebyscore7.zrevrangebyscore8.zcount9.zrank10.zscorezset(sortedset:有序集合)Rediszset和set一样也是string类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联
- 分布式训练中的参数local_rank
挨打且不服66
python分布式python
local_rank是一个常用于分布式训练中的参数,用于指示当前进程的本地编号。它帮助在分布式环境中区分不同的进程。通常情况下,local_rank的值为-1表示不进行分布式训练,值为0表示第一个(主)进程,其它正数表示其它辅助进程。在分布式训练中,我们常常需要确保某些操作(例如下载模型和词汇表)只由一个进程完成,以避免重复工作和资源浪费。以下是local_rank在不同情况下的用法解释:loca
- 【梯度下降算法】
蝉叫醒了夏天
机器学习算法
梯度下降算法:第一章梯度下降的历史沿革1.1优化方法的演进脉络从17世纪牛顿时代的数值解法,到20世纪最优控制理论的发展,直至现代机器学习对优化算法的特殊需求,梯度下降算法在数学优化史上占据重要地位。1947年FrankRosenblatt在感知机研究中首次系统应用梯度下降思想1.2机器学习时代的复兴21世纪深度学习革命使梯度下降算法获得新生:2006年Hinton团队在深度信念网络中的突破应用2
- redis 用来实现排行榜的功能
追风林
redis数据库缓存
简单的用Redis的zset数据结构来实现。@Test@DisplayName("实现一个简单的排行榜")publicvoidzSetRankingTest(){ZSetOperationszSetOperations=redisTemplate.opsForZSet();//添加假数据到排行榜zSetOperations.add("ranking","张三",1500);zSetOperatio
- 论文摘要生成器:用TextRank算法实现文献关键信息提取
Atlas Shepherd
python算法自然语言处理python信息可视化
我们基于python代码,使用PyQt5创建图形用户界面(GUI),同时支持中英文两种语言的文本论文文献关键信息提取。PyQt5:用于创建GUI应用程序。jieba:中文分词库,用于中文文本的处理。re:正则表达式模块,用于文本清理和句子分割。numpy:提供数值计算能力,如数组操作、矩阵运算等,主要用于TextRank算法的实现。importsysimportreimportjiebaimpor
- 计算机中计算排名用什么公式,最全面的Excel函数排名公式汇总
鸦杀已尽
计算机中计算排名用什么公式
在工作中,我们很常遇到需要对销售业绩或学生成绩等进行排名。使用排序的方法可以很便捷的进行排名,但是运用函数公式可能更加方便和高大上。本文列举了关于排名的几种方法:第一部分:美式排名公式一、用RANK函数两参数用法做基础排名(默认降序排列)。特点:如果有两个数字排名相同,如下图,有两个第5名,下一名就是第7名,跳过了6。也就是说最大的次序和总数据量一致,其中的第2个第5占据了“第6”这个名次。单列成
- 使用Excel计算排名
IT铺子
Excelexcel
在Excel中,有几种方法可以计算排名,常用的是使用RANK、RANK.EQ和RANK.AVG函数。这些函数可以根据给定的数据范围计算每个值的排名。以下是一些具体的排名计算示例。示例1:基本排名计算假设我们有一组学生的成绩,想要计算他们在班级中的排名。学生姓名成绩排名小明85小红92小刚78小丽88小华92步骤在“排名”列中输入公式=RANK.EQ(B2,$B$2:$B$6,0),然后按Enter
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- MySQL之——常用函数汇总
苏木樨
MySQL成神之路mysql数据库
目录1、MySQL字符串拼接函数2、MySQL字符串截取函数3、MySQL字符串长度函数char_length()、length()4、MySQL大小写转换函数5、MySQL之casewhenthanelseend函数6、MySQL之IF函数7、MySQL排序函数RANK8、MySQL聚合函数1、MySQL字符串拼接函数CONCAT语法concat(str1,str2,...)例子说明:SELEC
- FastGPT 引申:混合检索完整实例
窝窝和牛牛
FastGPT开源
文章目录FastGPT引申:混合检索完整实例1.各检索方式的初始结果2.RRF合并过程3.合并后的结果4.Rerank重排序后5.最终RRF合并6.内容总结FastGPT引申:混合检索完整实例下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我们有一个查询:“如何使用Python进行数据分析”1.各检索方式的初始结果向量检索结果(相似度分数0-1):1.{id:"doc1",q:"Pyth
- FastGPT 源码:RRF、Rerank 相关代码
窝窝和牛牛
FastGPT开源
文章目录FastGPT源码:RRF、Rerank相关代码1.RRF(ReciprocalRankFusion)合并实现2.Rerank二次排序实现3.重排序的主要特点4.整个搜索流程5.这种方式的优势FastGPT源码:RRF、Rerank相关代码下边介绍RRF合并和Rerank二次排序的相关实现:1.RRF(ReciprocalRankFusion)合并实现主要在datasetSearchRes
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-LLaMA-Factory-单机多卡-RTX 4090双卡(五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用LLaMA-Factory去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数
- FastGPT 源码:混合检索调用链路
窝窝和牛牛
FastGPT人工智能开源
文章目录FastGPT源码:混合检索调用链路1.入口函数2.核心搜索函数3.RRF合并函数4.Rerank重排序函数5.完整流程FastGPT源码:混合检索调用链路主要调用链路如下:1.入口函数在dispatchDatasetSearch(packages/service/core/workflow/dispatch/dataset/search.ts):exportasyncfunctiondi
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- X-LoRA:高效微调 LoRA 系列,实现不同领域知识专家混合模型
yumuing blog
前沿论文解读llama人工智能语言模型
文献卡X-LoRA:MixtureofLow-RankAdapterExperts,aFlexibleFrameworkforLargeLanguageModelswithApplicationsinProteinMechanicsandMolecularDesign作者:EricL.Buehler;MarkusJ.BuehlerDOI:10.48550/arXiv.2402.07148摘要:We
- SQL技能大进阶:解锁高级技巧,提升数据处理效率
大雨淅淅
数据库sql数据库
目录一、引言二、10个不可不知的高级SQL技巧(一)窗口函数:数据分析的得力助手(二)公共表达式(CTEs):让查询更清晰(三)聚合函数:数据汇总的利器(四)递归CTEs:处理分层数据的神器(五)临时函数:简化代码的好帮手(六)使用CASEWHEN枢转数据:灵活处理数据(七)EXCEPTvsNOTIN:查询数据的不同方式(八)自联结:在同一表中查找关联数据(九)RankvsDenseRankvsR
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi