[源码分析]并行分布式任务队列 Celery 之 子进程处理消息

[源码分析]并行分布式任务队列 Celery 之 子进程处理消息

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。在前文中,我们介绍了Celery 多线程模型,本文介绍子进程如何处理消息。

通过本文,大家可以梳理如下流程:

  • 父进程如何发送消息给子进程;
  • 子进程如何接受到父进程消息;
  • 子进程如何一步一步解析消息,从而把运行任务需要的各种信息一层一层剥离出来;
  • 子进程在得到任务信息后,如何运行任务;
  • 为什么 Celery 要有各种复杂繁琐的封装?

0x01 来由

我们首先回顾前文。之前 Celery work 中有 apply_async 函数调用到Pool,就是有用户的任务消息来到时,Celery 准备调用到 Pool

def apply_async(self, func, args=(), kwds={
     },...):           
        if self.threads:
            self._taskqueue.put(([(TASK, (result._job, None,
                                func, args, kwds))], None))
        else:
            self._quick_put((TASK, (result._job, None, func, args, kwds)))
        return result

然后,在 billiard/pool.py 这里可以见到,Pool 会 以self._taskqueue做为媒介,把消息传递到 TaskHandler 之中,进而将会调用到子进程。

class Pool(object):
    '''
    Class which supports an async version of applying functions to arguments.
    '''
    Worker = Worker
    Supervisor = Supervisor
    TaskHandler = TaskHandler
    TimeoutHandler = TimeoutHandler
    ResultHandler = ResultHandler

    def __init__(self, processes=None, initializer=None, initargs=(),...):

        self._task_handler = self.TaskHandler(self._taskqueue,
                                              self._quick_put,
                                              self._outqueue,
                                              self._pool,
                                              self._cache)
        if threads:
            self._task_handler.start()

此时逻辑如上文图例所示:

                           +
    Consumer               |
                   message |
                           v         strategy  +------------------------------------+
              +------------+------+            | strategies                         |
              | on_task_received  | <--------+ |                                    |
              |                   |            |[myTest.add : task_message_handler] |
              +------------+------+            +------------------------------------+
                           |
                           |
   +------------------------------------------------------------------------------------+
   strategy                |
                           |
                           |
                           v                Request [myTest.add]
              +------------+-------------+                       +---------------------+
              | task_message_handler     | <-------------------+ | create_request_cls  |
              |                          |                       |                     |
              +------------+-------------+                       +---------------------+
                           | _process_task_sem
                           |
  +------------------------------------------------------------------------------------+
   Worker                  | req[{
     Request} myTest.add]
                           v
                  +--------+-----------+
                  | WorkController     |
                  |                    |
                  |            pool +-------------------------+
                  +--------+-----------+                      |
                           |                                  |
                           |               apply_async        v
               +-----------+----------+                   +---+-------------------+
               |{
     Request} myTest.add  | +---------------> | TaskPool              |
               +----------------------+                   +----+------------------+
                                          myTest.add           |
                                                               |
+--------------------------------------------------------------------------------------+
                                                               |
                                                               v
                                                          +----+------------------+
                                                          | billiard.pool.Pool    |
                                                          +-------+---------------+
                                                                  |
                                                                  |
 Pool              +---------------------------+                  |
                   | TaskHandler               |                  |
                   |                           |                  |  self._taskqueue.put
                   |              _taskqueue   |  <---------------+
                   |                           |
                   +------------+--------------+
                                |
                                |  put(task)
                                |
+--------------------------------------------------------------------------------------+
                                |
 Sub process                    |
                                v
                            self._inqueue                       

手机如下:

[源码分析]并行分布式任务队列 Celery 之 子进程处理消息_第1张图片

注: 有同学指出,Windows上 Celery 多线程出错。特此说明下。

我的环境复杂,有mac, linux, windows,而且有的操作系统有多台,各种切换很无奈。

当分析本文部分代码时候,手上只有Windows,所以就只能贴出来Windows下面的具体调试变量。

其实具体OS不重要,重要的是通过代码来剖析Celery的设计思路。

于是我们顺着 taskqueue 就来到了TaskHandler。

0x02 父进程 TaskHandler

本部分介绍父进程如何传递 任务消息 给 子进程。

此时依然是父进程。代码位置是:\billiard\pool.py。具体堆栈为:

_send_bytes, connection.py:314
send, connection.py:233
body, pool.py:596
run, pool.py:504
_bootstrap_inner, threading.py:926
_bootstrap, threading.py:890

变量为:

self = {
     TaskHandler} <TaskHandler(Thread-16, started daemon 14980)>
 additional_info = {
     PyDBAdditionalThreadInfo} State:2 Stop:None Cmd: 107 Kill:False
 cache = {
     dict: 1} {
     0: <%s: 0 ack:False ready:False>}
 daemon = {
     bool} True
 name = {
     str} 'Thread-16'
 outqueue = {
     SimpleQueue} <billiard.queues.SimpleQueue object at 0x000001E2C07DD6C8>
 pool = {
     list: 8} [<SpawnProcess(SpawnPoolWorker-1, started daemon)>, <SpawnProcess(SpawnPoolWorker-2, started daemon)>, <SpawnProcess(SpawnPoolWorker-3, started daemon)>, <SpawnProcess(SpawnPoolWorker-4, started daemon)>, <SpawnProcess(SpawnPoolWorker-5, started daemon)>, <SpawnProcess(SpawnPoolWorker-6, started daemon)>, <SpawnProcess(SpawnPoolWorker-7, started daemon)>, <SpawnProcess(SpawnPoolWorker-8, started daemon)>]
 taskqueue = {
     Queue} <queue.Queue object at 0x000001E2C07DD208>
  _args = {
     tuple: 0} ()
  _children = {
     WeakKeyDictionary: 0} <WeakKeyDictionary at 0x1e2c0883448>
  _daemonic = {
     bool} True
  _kwargs = {
     dict: 0} {
     }
  _name = {
     str} 'Thread-16'
  _parent = {
     _MainThread} <_MainThread(MainThread, started 13408)>
  _pid = {
     NoneType} None
  _start_called = {
     bool} True
  _started = {
     Event} <threading.Event object at 0x000001E2C0883D88>
  _state = {
     int} 0
  _stderr = {
     LoggingProxy} <celery.utils.log.LoggingProxy object at 0x000001E2C07DD188>
  _target = {
     NoneType} None
  _tstate_lock = {
     lock} <locked _thread.lock object at 0x000001E2C081FDB0>
  _was_started = {
     bool} True

2.1 发送消息

当父进程接受到任务消息之后,就调用 put(task) 给在 父进程 和 子进程 之间的管道发消息。

注意,因为之前的赋值代码是:

self._taskqueue = Queue()

def _setup_queues(self):
        self._inqueue = Queue()
        self._outqueue = Queue()
        self._quick_put = self._inqueue.put
        self._quick_get = self._outqueue.get

就是说,TaskHandler 内部,如果接到消息,就 通过 self._inqueue.put 这个管道的函数 给 自己的 子进程发消息。 self._taskqueue 就是一个中间变量媒介而已

所以此时变量如下:

put = {
     method} <bound method _ConnectionBase.send of <billiard.connection.PipeConnection object at 0x000001E2C07DD2C8>>

self = {
     TaskHandler} <TaskHandler(Thread-16, started daemon 14980)>

task = {
     tuple: 2} 
 0 = {
     int} 2
 1 = {
     tuple: 5} (0, None, <function _trace_task_ret at 0x000001E2BFCA3438>, ('myTest.add', 'dee72291-5614-4106-a7bf-007023286e9e', {
     'lang': 'py', 'task': 'myTest.add', 'id': 'dee72291-5614-4106-a7bf-007023286e9e', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'dee72291-5614-4106-a7bf-007023286e9e', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen17456@DESKTOP-0GO3RPO', 'reply_to': '21660796-c7e7-3736-9d42-e1be6ff7eaa8', 'correlation_id': 'dee72291-5614-4106-a7bf-007023286e9e', 'hostname': 'celery@DESKTOP-0GO3RPO', 'delivery_info': {
     'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [2, 8], 'kwargs': {
     }}, b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8'), {
     })
 __len__ = {
     int} 2
    
taskqueue = {
     Queue} <queue.Queue object at 0x000001E2C07DD208>

具体代码如下,可以看到就是给管道发消息,并且通知 result handler 和 其他worker

class TaskHandler(PoolThread):

    def __init__(self, taskqueue, put, outqueue, pool, cache):
        self.taskqueue = taskqueue
        self.put = put
        self.outqueue = outqueue
        self.pool = pool
        self.cache = cache
        super(TaskHandler, self).__init__()

    def body(self):
        cache = self.cache
        taskqueue = self.taskqueue
        put = self.put

        for taskseq, set_length in iter(taskqueue.get, None):
            task = None
            i = -1
            try:
                for i, task in enumerate(taskseq):
                    try:
                        put(task)

                break


        self.tell_others()

2.2 通知其他

tell_others 的作用是通知 result handler, 以及其他 worker。

def tell_others(self):
    outqueue = self.outqueue
    put = self.put
    pool = self.pool

    try:
        # tell result handler to finish when cache is empty
        outqueue.put(None)

        # tell workers there is no more work
        for p in pool:
            put(None)

0x03 子进程 worker

本部分介绍 Worker 子进程 如何接受任务,并且执行任务。

既然任务消息已经通过管道发送给子进程,现在执行来到了 子进程,注意此时 self 是 billiard.pool.Worker。

3.1 子进程 loop

在worker中,消息 loop 具体逻辑(多次解析消息)是:

  • 调用 wait_for_job 来等待父进程写入管道的消息;
  • 得到了用户消息 req 之后,解析出来 :type_, args = req
  • 如果需要发送 ACK,就发送;
  • 对于解析出来的 args,再次解析:job, i, fun, args, kwargs = args_,得到 job,子进程需要执行的函数,函数的参数等等;
  • 如果需要 wait_for_syn ,就处理;
  • 通过 fun 来 间接调用用户自定义函数 result = (True, prepare_result( fun(*args, **kwargs))),并且返回result。需要注意的是,这里的 fun 是 _trace_task_ret,用户自定的函数由 _trace_task_ret 内部调用;
  • 进行后续处理,比如给父进程发送 READY;

代码如下:

def workloop(self, debug=debug, now=monotonic, pid=None):
    pid = pid or os.getpid()
    put = self.outq.put
    inqW_fd = self.inqW_fd
    synqW_fd = self.synqW_fd
    maxtasks = self.maxtasks
    prepare_result = self.prepare_result

    wait_for_job = self.wait_for_job
    _wait_for_syn = self.wait_for_syn

    def wait_for_syn(jid):
        i = 0
        while 1:
            if i > 60:
                error('!!!WAIT FOR ACK TIMEOUT: job:%r fd:%r!!!',
                      jid, self.synq._reader.fileno(), exc_info=1)
            req = _wait_for_syn()
            if req:
                type_, args = req # 解析用户传递来的消息 req
                if type_ == NACK:
                    return False
                assert type_ == ACK
                return True
            i += 1

    completed = 0
    try:
        while maxtasks is None or (maxtasks and completed < maxtasks):
            req = wait_for_job()
            if req:
                type_, args_ = req
                assert type_ == TASK
                job, i, fun, args, kwargs = args_ # 再次解析,得到变量。这里的 fun 是 `_trace_task_ret`,用户自定的函数由 `_trace_task_ret` 内部调用
                put((ACK, (job, i, now(), pid, synqW_fd)))
                if _wait_for_syn:
                    confirm = wait_for_syn(job)
                    if not confirm:
                        continue  # received NACK

                    result = (True, prepare_result(fun(*args, **kwargs)))
 
                    put((READY, (job, i, result, inqW_fd)))

                completed += 1
                if max_memory_per_child > 0:
                    used_kb = mem_rss()
                    if used_kb > 0 and used_kb > max_memory_per_child:
                        warning(MAXMEM_USED_FMT.format(
                            used_kb, max_memory_per_child))
                        return EX_RECYCLE

        if maxtasks:
            return EX_RECYCLE if completed == maxtasks else EX_FAILURE
        return EX_OK
    finally:
        self._ensure_messages_consumed(completed=completed)

此时变量如下,req 变量就是父进程通过管道传过来的消息,子进程初步会解析成 args_

prepare_result = {
     method} <bound method Worker.prepare_result of <billiard.pool.Worker object at 0x000001BFAE5AE308>>
    
put = {
     method} <bound method _SimpleQueue.put of <billiard.queues.SimpleQueue object at 0x000001BFAE1BE7C8>>
    
type_ = 2 // 在 pool.py中有定义 TASK = 2
  
req = {
     tuple: 2} (2, (6, None, <function _trace_task_ret at 0x000001BFAE53EA68>, ('myTest.add', '2c6d431f-a86a-4972-886b-472662401d20', {
     'lang': 'py', 'task': 'myTest.add', 'id': '2c6d431f-a86a-4972-886b-472662401d20', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': '2c6d431f-a86a-4972-886b-472662401d20', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen14656@DESKTOP-0GO3RPO', 'reply_to': '3c9cc3a7-65d6-349b-ba66-399dc47b7cad', 'correlation_id': '2c6d431f-a86a-4972-886b-472662401d20', 'hostname': 'DESKTOP-0GO3RPO', 'delivery_info': {
     'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [2, 8], 'kwargs': {
     }, 'is_eager': False, 'callbacks': None, 'errbacks': None, 'chain': None, 'chord': None}, b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8'), {
     }))

self = {
     Worker} <billiard.pool.Worker object at 0x000001BFAE5AE308>
    
kwargs = {
     dict: 0} {
     }

args_ = (6, None, <function _trace_task_ret at 0x000001BFAE53EA68>, ('myTest.add', '2c6d431f-a86a-4972-886b-472662401d20', {
     'lang': 'py', 'task': 'myTest.add', 'id': '2c6d431f-a86a-4972-886b-472662401d20', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': '2c6d431f-a86a-4972-886b-472662401d20', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen14656@DESKTOP-0GO3RPO', 'reply_to': '3c9cc3a7-65d6-349b-ba66-399dc47b7cad', 'correlation_id': '2c6d431f-a86a-4972-886b-472662401d20', 'hostname': 'DESKTOP-0GO3RPO', 'delivery_info': {
     'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [2, 8], 'kwargs': {
     }, 'is_eager': False, 'callbacks': None, 'errbacks': None, 'chain': None, 'chord': None}, b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8'), {
     }))

对于前面的逻辑图,我们往下扩展逻辑如下:

                                                               +
                                                               |
                                                               |
                                                               v
                                                          +----+------------------+
                                                          | billiard.pool.Pool    |
                                                          +-------+---------------+
                                                                  |
                                                                  |
 Pool              +---------------------------+                  |
                   | TaskHandler               |                  |
                   |                           |                  |  self._taskqueue.put
                   |              _taskqueue   |  <---------------+
                   |                           |
                   +------------+--------------+
                                |
                                |  put(task)
                                |
+--------------------------------------------------------------------------------------+
                                |
 billiard.pool.Worker           |  get                             Sub process
                                v
                     +----------+-----------------------------+
                     |  workloop                              |
                     |                                        |
                     |                                        |
                     |          wait_for_job                  |
                     |                                        |
                     +----------------------------------------+

手机如下:

[源码分析]并行分布式任务队列 Celery 之 子进程处理消息_第2张图片

3.2 得到父进程消息

wait_for_job 函数最终辗转调用到了_make_recv_method,就是使用管道 conn 的 读取函数来处理。

读取到的就是从父进程传递过来的消息 req,具体见前面。

回顾父进程的写入消息内容

put = {
     method} <bound method _ConnectionBase.send of <billiard.connection.PipeConnection object at 0x000001E2C07DD2C8>>

self = {
     TaskHandler} <TaskHandler(Thread-16, started daemon 14980)>

task = {
     tuple: 2} 
 0 = {
     int} 2
 1 = {
     tuple: 5} (0, None, <function _trace_task_ret at 0x000001E2BFCA3438>, ('myTest.add', 'dee72291-5614-4106-a7bf-007023286e9e', {
     'lang': 'py', 'task': 'myTest.add', 'id': 'dee72291-5614-4106-a7bf-007023286e9e', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'dee72291-5614-4106-a7bf-007023286e9e', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen17456@DESKTOP-0GO3RPO', 'reply_to': '21660796-c7e7-3736-9d42-e1be6ff7eaa8', 'correlation_id': 'dee72291-5614-4106-a7bf-007023286e9e', 'hostname': 'celery@DESKTOP-0GO3RPO', 'delivery_info': {
     'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [2, 8], 'kwargs': {
     }}, b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8'), {
     })
 __len__ = {
     int} 2

可以看到,父进程写入的内容在子进程被读取出来。具体 子进程是通过 _make_recv_method来读取消息,就是使用管道 conn 的 读取函数来处理

这里是子进程了。

    def _make_recv_method(self, conn):
        get = conn.get

        if hasattr(conn, '_reader'):
            _poll = conn._reader.poll
            if hasattr(conn, 'get_payload') and conn.get_payload:
                get_payload = conn.get_payload

                def _recv(timeout, loads=pickle_loads):
                    return True, loads(get_payload())
            else:
                def _recv(timeout):  # noqa
                    if _poll(timeout):
                        return True, get()
                    return False, None
        else:
            def _recv(timeout):  # noqa
                try:
                    return True, get(timeout=timeout)
                except Queue.Empty:
                    return False, None
        return _recv

3.3 解析消息

子进程读取消息之后,进行解析。job, i, fun, args, kwargs = args_

其实就是把之前 args_ 的内容一一解析。

args_ = (6, None, <function _trace_task_ret at 0x000001BFAE53EA68>, ('myTest.add', '2c6d431f-a86a-4972-886b-472662401d20', {
     'lang': 'py', 'task': 'myTest.add', 'id': '2c6d431f-a86a-4972-886b-472662401d20', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': '2c6d431f-a86a-4972-886b-472662401d20', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen14656@DESKTOP-0GO3RPO', 'reply_to': '3c9cc3a7-65d6-349b-ba66-399dc47b7cad', 'correlation_id': '2c6d431f-a86a-4972-886b-472662401d20', 'hostname': 'DESKTOP-0GO3RPO', 'delivery_info': {
     'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [2, 8], 'kwargs': {
     }, 'is_eager': False, 'callbacks': None, 'errbacks': None, 'chain': None, 'chord': None}, b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8'), {
     }))

所以得到 :

job = {
     int} 6

i = {
     NoneType} None

fun = {
     function} <function _trace_task_ret at 0x000001BFAE53EA68>

kwargs = {
     dict: 0} {
     }

args = {
     tuple: 6} 
 0 = {
     str} 'myTest.add'
 1 = {
     str} '2c6d431f-a86a-4972-886b-472662401d20'
 2 = {
     dict: 26} {
     'lang': 'py', 'task': 'myTest.add', 'id': '2c6d431f-a86a-4972-886b-472662401d20', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': '2c6d431f-a86a-4972-886b-472662401d20',
 3 = {
     bytes: 81} b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]'
 4 = {
     str} 'application/json'
 5 = {
     str} 'utf-8'
 __len__ = {
     int} 6

这样,子进程就知道自己需要调用什么函数(这里就是 myTest.add ),函数有什么参数(这里就是 (2, 8)

我们理一下消息读取解析流程:

  • 父进程写入 task
  • 子进程读取为 req
  • 子进程解析 req 为 type_,args_
  • 子进程解析 args_ 为:job, i, fun, args, kwargs。这里的 fun 是 _trace_task_ret,用户自定的函数由 _trace_task_ret 内部调用。
  • 在 args 之中,才包含用户自定义函数和其参数;

3.3.1 回调函数在父进程中的配置

刚刚提到,第一次解析出来的 fun 是 _trace_task_ret,用户自定的函数由 _trace_task_ret 内部调用。

我们需要看看回调函数 fun 在父进程中哪里配置。

由前文我们知道,当接受到任务时候,task_message_handler 会通过 Rqeust 类来使用多进程

注意:这个图 中的 Worker scope 是 celery/apps/worker.py,属于 Celery 之中逻辑范畴,不是子进程相关概念。Celery 中有多个同名类,这点很让人纠结。

                         +
  Consumer               |
                 message |
                         v         strategy  +------------------------------------+
            +------------+------+            | strategies                         |
            | on_task_received  | <--------+ |                                    |
            |                   |            |[myTest.add : task_message_handler] |
            +------------+------+            +------------------------------------+
                         |
                         |
 +------------------------------------------------------------------------------------+
 strategy                |
                         |
                         |
                         v                Request [myTest.add]
            +------------+-------------+                       +---------------------+
            | task_message_handler     | <-------------------+ | create_request_cls  |
            |                          |                       |                     |
            +------------+-------------+                       +---------------------+
                         | _process_task_sem
                         |
+--------------------------------------------------------------------------------------+
 Worker                  | req[{
     Request} myTest.add]
                         v
                +--------+-----------+
                | WorkController     |
                |                    |       apply_async
                |            pool +-------------------------+
                +--------+-----------+                      |
                         |                                  |
                         |                                  v
             +-----------+----------+                   +---+-------+
             |{
     Request} myTest.add  | +---------------> | TaskPool  |
             +----------------------+                   +-----------+
                                        myTest.add

手机如下:

[源码分析]并行分布式任务队列 Celery 之 子进程处理消息_第3张图片

此时调用的 apply_async 其实就是pool.apply_async的方法。

在 Request 类的 execute_using_pool中,我们发现,pool.apply_async 的参数正是 trace_task_ret,所以就知道了,trace_task_ret 必然就是父进程传递的参数

class Request:
    """A request for task execution."""
    
   def execute_using_pool(self, pool, **kwargs):
        """Used by the worker to send this task to the pool.
        """

        result = pool.apply_async(
            trace_task_ret, # 就是这里
            args=(self._type, task_id, self._request_dict, self._body,
                  self._content_type, self._content_encoding), # 这里才包含了用户自定义的函数
            accept_callback=self.on_accepted,
            timeout_callback=self.on_timeout,
            callback=self.on_success,
            error_callback=self.on_failure,
            soft_timeout=soft_time_limit or task.soft_time_limit,
            timeout=time_limit or task.time_limit,
            correlation_id=task_id,
        )
        # cannot create weakref to None
        self._apply_result = maybe(ref, result)
        return result    

3.4 调用函数

由上面知道,Pool 的 调用函数是:_trace_task_ret,即 _trace_task_ret 是 一个对用户函数的统一外层封装,对于 Pool 来说,调用 _trace_task_ret 即可,_trace_task_ret 内部会调用用户函数

为什么不直接调用用户函数 myTest.add?而是使用 _trace_task_ret 再封装一层?从名字带上 trace 就能看出来,这里就是扩展性,调试,trace 和 运行速度的一个综合妥协

核心代码为两处:

3.3.1 获取 Celery 应用

第一处重点为:获取事先在子进程就设置好的 Celery 应用,代码如下:

app = app or current_app._get_current_object()

这里就有一个问题:Celery 应用是在父进程中,子进程如何得到。

虽然在一些多进程机制中,父进程的变量是会复制到子进程中,但是这并不是一定的,所以必然有一个父进程把 Celery 应用 设置给子进程的机制。

具体关于 父进程是如何给子进程配置 Celery应用,以及子进程如何得到这个应用的详细解析,请参见前文。

3.3.2 获取任务

第二处重点在于:如何获取实现注册好的任务task。代码如下:

R, I, T, Rstr = trace_task(app.tasks[name], uuid, args, kwargs, request, app=app)

其中,app.tasks为事先注册的变量,就是 Celery 之中的所有任务,其中包括内置任务和用户任务。

于是 app.tasks[name] 就是通过任务名字来得到对应的任务本身

app.tasks = {
     TaskRegistry: 9} 
 NotRegistered = {
     type} <class 'celery.exceptions.NotRegistered'>
 'celery.starmap' = {
     xstarmap} <@task: celery.starmap of myTest at 0x1bfae596d48>
 'celery.chord' = {
     chord} <@task: celery.chord of myTest at 0x1bfae596d48>
 'celery.accumulate' = {
     accumulate} <@task: celery.accumulate of myTest at 0x1bfae596d48>
 'celery.chunks' = {
     chunks} <@task: celery.chunks of myTest at 0x1bfae596d48>
 'celery.chord_unlock' = {
     unlock_chord} <@task: celery.chord_unlock of myTest at 0x1bfae596d48>
 'celery.group' = {
     group} <@task: celery.group of myTest at 0x1bfae596d48>
 'celery.map' = {
     xmap} <@task: celery.map of myTest at 0x1bfae596d48>
 'celery.chain' = {
     chain} <@task: celery.chain of myTest at 0x1bfae596d48>
 'celery.backend_cleanup' = {
     backend_cleanup} <@task: celery.backend_cleanup of myTest at 0x1bfae596d48>

此时逻辑如下:

                                                                   +
                                                                   |
                                                                   |
                                                                   v
                                                           +-------+---------------+
                                                           | billiard.pool.Pool    |
                                                           +-------+---------------+
                                                                   |
                                                                   |
    +---------------------------+                                  |
    | TaskHandler               |                                  |
    |                           |                                  | self._taskqueue.put
    |              _taskqueue   |  <-------------------------------+
    |                           |
    +------------+--------------+
                 |
                 |  put(task)                                                     Pool
                 |
 +-------------------------------------------------------------------------------------+
                 |
                 |  get                               billiard.pool.Worker   Sub process
                 v
+----------------+------+           +--------------------------------------------------+
|  workloop             |           | app.tasks                                        |
|                       |           |                                                  |
|       wait_for_job    |           |'celery.chord' =  @task: celery.chord of myTest   |
|                       |           |'celery.chunks' =  @task: celery.chunks of myTest |
|     app.tasks[name] <-------------+'celery.group' =   @task: celery.group of myTest> |
|                       |           | ......                                           |
|                       |           |                                                  |
+-----------------------+           +--------------------------------------------------+

手机如下:

[源码分析]并行分布式任务队列 Celery 之 子进程处理消息_第4张图片

3.3.3 调用任务

既然得到了要调用哪一个任务,我们就看看如何调用。

3.3.3.1 获取任务

由上面可知,回调函数是从父进程传过来的,即

fun = {
     function} <function _trace_task_ret at 0x000001BFAE53EA68>

_trace_task_ret 的定义在celery\app\trace.py。

逻辑为:

  • 获取 Celery 应用 到 app。

  • 提取消息内容等,更新 Request,比如:

    • request = {
               dict: 26} 
       'lang' = {
               str} 'py'
       'task' = {
               str} 'myTest.add'
       'id' = {
               str} 'a8928c1e-1e56-4502-9929-80a01b1bbfd8'
       'shadow' = {
               NoneType} None
       'eta' = {
               NoneType} None
       'expires' = {
               NoneType} None
       'group' = {
               NoneType} None
       'group_index' = {
               NoneType} None
       'retries' = {
               int} 0
       'timelimit' = {
               list: 2} [None, None]
       'root_id' = {
               str} 'a8928c1e-1e56-4502-9929-80a01b1bbfd8'
       'parent_id' = {
               NoneType} None
       'argsrepr' = {
               str} '(2, 8)'
       'kwargsrepr' = {
               str} '{}'
       'origin' = {
               str} 'gen17060@DESKTOP-0GO3RPO'
       'reply_to' = {
               str} '5a520373-7712-3326-9ce8-325df14aa2ad'
       'correlation_id' = {
               str} 'a8928c1e-1e56-4502-9929-80a01b1bbfd8'
       'hostname' = {
               str} 'DESKTOP-0GO3RPO'
       'delivery_info' = {
               dict: 4} {
               'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}
       'args' = {
               list: 2} [2, 8]
       'kwargs' = {
               dict: 0} {
               }
       'is_eager' = {
               bool} False
       'callbacks' = {
               NoneType} None
       'errbacks' = {
               NoneType} None
       'chain' = {
               NoneType} None
       'chord' = {
               NoneType} None
       __len__ = {
               int} 26
      
  • 从task 名字得倒 用户Task

  • 利用 request 调用 用户Task。

具体代码如下:

def trace_task(task, uuid, args, kwargs, request={
     }, **opts):
    """Trace task execution."""
    try:
        if task.__trace__ is None:
            task.__trace__ = build_tracer(task.name, task, **opts)
        return task.__trace__(uuid, args, kwargs, request) # 调用在strategy更新时写入的方法


def _trace_task_ret(name, uuid, request, body, content_type,
                    content_encoding, loads=loads_message, app=None,
                    **extra_request):
    
    app = app or current_app._get_current_object()    # 获取Celery 应用
    
    embed = None
    if content_type:
        accept = prepare_accept_content(app.conf.accept_content)
        args, kwargs, embed = loads(
            body, content_type, content_encoding, accept=accept,
        )
    else:
        args, kwargs, embed = body
    
    request.update({
     
        'args': args, 'kwargs': kwargs,
        'hostname': hostname, 'is_eager': False,
    }, **embed or {
     })
    
    R, I, T, Rstr = trace_task(app.tasks[name],
                        uuid, args, kwargs, request, app=app)    # 调用trace_task执行task
    
    return (1, R, T) if I else (0, Rstr, T)

trace_task_ret = _trace_task_ret

此时变量为:

accept = {
     set: 1} {
     'application/json'}
app = {
     Celery} <Celery myTest at 0x1bfae596d48>
args = {
     list: 2} [2, 8]
body = {
     bytes: 81} b'[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]'
content_encoding = {
     str} 'utf-8'
content_type = {
     str} 'application/json'
embed = {
     dict: 4} {
     'callbacks': None, 'errbacks': None, 'chain': None, 'chord': None}
extra_request = {
     dict: 0} {
     }
kwargs = {
     dict: 0} {
     }
loads = {
     method} <bound method SerializerRegistry.loads of <kombu.serialization.SerializerRegistry object at 0x000001BFAE329408>>
name = {
     str} 'myTest.add'
request = {
     dict: 26} {
     'lang': 'py', 'task': 'myTest.add', 'id': '2c6d431f-a86a-4972-886b-472662401d20', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': '2c6d431f-a86a-4972-886b-472662401d20',
uuid = {
     str} '2c6d431f-a86a-4972-886b-472662401d20'
3.3.3.2 调用任务

调用时候用到了trace_task,其定义如下:

def trace_task(task, uuid, args, kwargs, request=None, **opts):
    """Trace task execution."""
    request = {
     } if not request else request
    try:
        if task.__trace__ is None:
            task.__trace__ = build_tracer(task.name, task, **opts)
        return task.__trace__(uuid, args, kwargs, request)

在update_stragegy时传入的方法是,

task.__trace__ = build_tracer(name, task, loader, self.hostname,
                                          app=self.app) 

build_tracer函数的部分解析是,

def build_tracer(name, task, loader=None, hostname=None, store_errors=True,
                 Info=TraceInfo, eager=False, propagate=False, app=None,
                 monotonic=monotonic, truncate=truncate,
                 trace_ok_t=trace_ok_t, IGNORE_STATES=IGNORE_STATES):
  
    fun = task if task_has_custom(task, '__call__') else task.run   # 获取task对应的run函数

    ...
    def trace_task(uuid, args, kwargs, request=None):
        # R      - is the possibly prepared return value.
        # I      - is the Info object.
        # T      - runtime
        # Rstr   - textual representation of return value
        # retval - is the always unmodified return value.
        # state  - is the resulting task state.

        # This function is very long because we've unrolled all the calls
        # for performance reasons, and because the function is so long
        # we want the main variables (I, and R) to stand out visually from the
        # the rest of the variables, so breaking PEP8 is worth it ;)
        
        R = I = T = Rstr = retval = state = None
        task_request = None
        time_start = monotonic()
        ...
        # -*- TRACE -*-
            try:
                R = retval = fun(*args, **kwargs) # 执行对应的函数
                state = SUCCESS
            except Reject as exc:
                    ...
    return trace_task

此时调用的 fun 函数才是task本来应该执行的函数(myTest.add),此时就执行了对应task并获得了函数执行的返回结果

至此,一个消费的过程就完成了。

从下文开始,我们介绍 Celery 的一些辅助功能,比如负载均衡,容错等等。

0xFF 参考

celery源码分析-Task的初始化与发送任务

Celery 源码解析三: Task 对象的实现

分布式任务队列 Celery —— 详解工作流

★★★★★★关于生活和技术的思考★★★★★★

微信公众账号:罗西的思考

如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,可以扫描下面二维码(或者长按识别二维码)关注个人公众号)。

在这里插入图片描述

你可能感兴趣的:(008_分布式,016_消息队列,Celery,Kombu,Python,任务队列,分布式)