struct file_operations {
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int); int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
这个结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。
下面就开始写子程序。
#include 基本的类型定义
#include 文件系统使用相关的头文件
#include
#include
#include
unsigned int test_major = 0;
static int read_test(struct inode *inode,struct file *file,char *buf,int count)
{
int left; 用户空间和内核空间
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
这个函数是为read调用准备的。当调用read时,read_test()被调用,它把用户的缓冲区全部写1。buf 是read调用的一个参数。它是用户进程空间的一个地址。但是在read_test被调用时,系统进入核心态。所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。另外还有很多类似功能的函数。请参考,在向用户空间拷贝数据之前,必须验证buf是否可用。这就用到函数verify_area。为了验证BUF是否可以用。
static int write_test(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_test(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT; 模块计数加以,表示当前内核有个设备加载内核当中去
return 0;
}
static void release_test(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
这几个函数都是空操作。实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。
struct file_operations test_fops = {
?
read_test,
write_test,
open_test,
release_test,
};
设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(modules),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。
int init_module(void)
{
int result;
result = register_chrdev(0, "test", &test_fops); 对设备操作的整个接口
if (result 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令将编译好的模块调入内存时,init_module 函数被调用。在这里,init_module只做了一件事,就是向系统的字符设备表登记了一个字符设备。register_chrdev需要三个参数,参数一是希望获得的设备号,如果是零的话,系统将选择一个没有被占用的设备号返回。参数二是设备文件名,参数三用来登记驱动程序实际执行操作的函数的指针。 如果登记成功,返回设备的主设备号,不成功,返回一个负值。
void cleanup_module(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸载模块时,cleanup_module函数被调用,它释放字符设备test在系统字符设备表中占有的表项。 一个极其简单的字符设备可以说写好了,文件名就叫test.c吧。 下面编译 : $ gcc -O2 -DMODULE -D__KERNEL__ -c test.c –c表示输出制定名,自动生成.o文件 得到文件test.o就是一个设备驱动程序。 如果设备驱动程序有多个文件,把每个文件按上面的命令行编译,然后 ld ?-r ?file1.o ?file2.o ?-o ?modulename。 驱动程序已经编译好了,现在把它安装到系统中去。 $ insmod ?–f ?test.o 如果安装成功,在/proc/devices文件中就可以看到设备test,并可以看到它的主设备号。要卸载的话,运行 : $ rmmod test 下一步要创建设备文件。 mknod /dev/test c major minor c 是指字符设备,major是主设备号,就是在/proc/devices里看到的。 用shell命令 $ cat /proc/devices 就可以获得主设备号,可以把上面的命令行加入你的shell script中去。 minor是从设备号,设置成0就可以了。 我们现在可以通过设备文件来访问我们的驱动程序。写一个小小的测试程序。
#include
#include
#include
#include
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 ) {
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
编译运行,看看是不是打印出全1 ? 以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。上述给出了一个简单的字符设备驱动编写的框架和原理,更为复杂的编写需要去认真研究LINUX内核的运行机制和具体的设备运行的机制等等。希望大家好好掌握LINUX设备驱动程序编写的方法。 免责声明:本文内容来源于网络,版权归原作者所有。如涉及作品版权问题,请联系删除。
1
《8000字干货 | 为什么要用C语言实现面向对象?》
2
《单片机技术即将被淘汰???》
3
《读完的都收藏啦!!!万字干货嵌入式系统设计开发大全……》
01
02
03
04
05
滑动查看更多