主从复制:
主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。
主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵:
在主从复制的基础上,哨兵实现了自动化的故障恢复。
缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
集群:
- 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Maste机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。
实验环境:
主机名 | 操作系统 | IP地址 | 所需软件 |
---|---|---|---|
Master | Centos7 | 192.168.180.131 | squid-3.5.28.tar.gz |
Slave1 | Centos7 | 192.168.180.132 | squid-3.5.28.tar.gz |
Slave2 | Centos7 | 192.168.180.133 | squid-3.5.28.tar.gz |
1、将三台服务器安装上Redis
操作节点:
- Master 192.168.180.131
- Slave1 192.168.180.132
- Slave2 192.168.180.133
所需软件包下载 :redis-5.0.7.tar.gz 提取码: 1228
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
yum -y install gcc gcc-c++ make
cd /opt
#将软件包传至该目录下
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd redis-5.0.7/
make -j 4 && make PREFIX=/usr/local/redis install
cd /opt/redis-5.0.7/utils/
./install_server.sh
#回车,直到出现以下选项,手动修改为“/usr/local/redis/bin/redis-server”
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server
ln -s /usr/local/redis/bin/* /usr/local/bin/
netstat -natp | grep "redis"
#当 install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认侦听端口为 6379
2、修改Master节点的 Redis 配置文件
操作节点:
- Master 192.168.180.131
vim /etc/redis/6379.conf
bind 0.0.0.0 #70行,改为bind 0.0.0.0 默认监听所有网卡,单纯注释没用
daemonize yes #137行,开启守护进程
logfile /var/log/redis_6379.log #172行,指定日志文件目录
dir /var/lib/redis/6379 #264行,指定工作目录
appendonly yes #700行,开启AOF持久化功能
/etc/init.d/redis_6379 restart
#修改完重启一下
正常来说这两边改一下就行了,其他都是默认的
3、修改Slave节点的 Redis 配置文件
操作节点:
- Slave1 192.168.180.132
- Slave2 192.168.180.133
vim /etc/redis/6379.conf
#bind 127.0.0.1 #70行,注释掉bind 项,默认监听所有网卡
daemonize yes #137行,开启守护进程
logfile /var/log/redis_6379.log #172行,指定日志文件目录
dir /var/lib/redis/6379 #264行,指定工作目录
replicaof 192.168.180.131 6379 #288行,指定要同步的Master节点IP和端口
appendonly yes #700行,开启AOF持久化功能
/etc/init.d/redis_6379 restart
#改完配置重启一下
4、验证主从效果
在Master节点上看日志:
tail -f /var/log/redis_6379.log
Replica 192.168.180.133:6379 asks for synchronization
Replica 192.168.180.132:6379 asks for synchronization
在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.180.132,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.180.133,port=6379,state=online,offset=1246,lag=1
哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。
哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master 并将所有
Slave 连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式,所有节点上都需要部署哨兵模式,哨兵模式会监控所有的 Redis 工作节点是否正常,当 Master 出现问题的时候,因为其他节点与主节点失去联系,因此会投票,投票过半就认为这个 Master 的确出现问题,然后会通知哨兵间,然后从 Slaves 中选取一个作为新的 Master。
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。
●监控:哨兵会不断地检查主节点和从节点是否运作正常。
●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为复制新的主节点。
●通知(提醒):哨兵可以将故障转移的结果发送给客户端。
哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。 ●数据节点:主节点和从节点都是数据节点。
实验环境:
主机名 | 操作系统 | IP地址 | 所需软件 |
---|---|---|---|
Master | Centos7 | 192.168.180.131 | squid-3.5.28.tar.gz |
Slave1 | Centos7 | 192.168.180.132 | squid-3.5.28.tar.gz |
Slave2 | Centos7 | 192.168.180.133 | squid-3.5.28.tar.gz |
操作节点:
- Master 192.168.180.131
- Slave1 192.168.180.132
- Slave2 192.168.180.133
vim /opt/redis-5.0.7/sentinel.conf
protected-mode no #17行,关闭保护模式
port 26379 #21行,Redis哨兵默认的监听端口
daemonize yes #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log" #36行,指定日志存放路径
dir "/var/lib/redis/6379" #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.180.131 6379 2 #84行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 3000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 #146行,故障节点的最大超时时间为180000(180秒)
先启master,再启slave
操作节点:
- Master 192.168.180.131
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
操作节点:
- Slave1 192.168.180.132
- Slave2 192.168.180.133
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
操作节点:
- Master 192.168.180.131
redis-cli -p 26379 info Sentinel
操作节点:
- Master 192.168.180.131
#查看redis-server进程号:
ps -ef | grep redis
#杀死 Master 节点上redis-server的进程号
kill -9 1192 #Master节点上redis-server的进程号
#验证结果
tail -f /var/log/sentinel.log
redis-cli -p 26379 INFO Sentinel
#Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.180.132:6379,slaves=2,sentinels=3
集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。
集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。
#集群的作用,可以归纳为两点:
(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。
#Redis集群的数据分片:
Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每个节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽
#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。
---------------------- 搭建Redis 群集模式 ----------------------------------------
redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6000/6001/6002,对应的从节点端口号:7000/7001/7002。
cd /etc/redis/
mkdir -p redis-cluster/redis600{1…6}
for i in {1…6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600 i c p / o p t / r e d i s − 5.0.7 / s r c / r e d i s − c l i / o p t / r e d i s − 5.0.7 / s r c / r e d i s − s e r v e r / e t c / r e d i s / r e d i s − c l u s t e r / r e d i s 600 i cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600 icp/opt/redis−5.0.7/src/redis−cli/opt/redis−5.0.7/src/redis−server/etc/redis/redis−cluster/redis600i
done
#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1 #69行,注释掉bind 项,默认监听所有网卡
protected-mode no #88行,修改,关闭保护模式
port 6001 #92行,修改,redis监听端口,
daemonize yes #136行,以独立进程启动
cluster-enabled yes #832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000 #846行,取消注释群集超时时间设置
appendonly yes #700行,修改,开启AOF持久化
#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conf
for d in {1…6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
done
ps -ef | grep redis
#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.01:6003 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 --cluster-replicas 1
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
–replicas 1 表示每个主节点有1个从节点。
#测试群集
redis-cli -p 6001 -c #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots #查看节点的哈希槽编号范围
127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK
127.0.0.1:6001> cluster keyslot name #查看name键的槽编号
redis-cli -p 6004 -c
127.0.0.1:6004> keys * #对应的slave节点也有这条数据,但是别的节点没有