python manager与basemanager_python3 分布式进程(跨机器)BaseManager(multiprocessing.managers)

A机器负责发送任务和接受结果:

#task_master.py

import random,time,queue

from multiprocessing.managers import BaseManager

task_queue = queue.Queue()

result_queue = queue.Queue()

class QueueManager(BaseManager):

pass

if __name__ == '__main__':

print("master start.")

QueueManager.register('get_task_queue',callable = lambda:task_queue)

QueueManager.register('get_result_queue',callable = lambda:result_queue)

manager = QueueManager(address = ('10.10.100.11',9833),authkey=b'abc')

manager.start()

task = manager.get_task_queue()

result = manager.get_result_queue()

for i in range(10):

n = random.randint(0,1000)

print('put task %d ...' % n)

task.put(n)

print('try get results...')

for i in range(10):

r = result.get(timeout = 100)

print('Result:%s' % r)

manager.shutdown()

print('master exit.')

B机器负责处理任务和发送结果:

#task_worker.py

import sys,time,queue

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):

pass

QueueManager.register('get_task_queue')

QueueManager.register('get_result_queue')

server_addr = '10.10.100.11'

print('connect to server %s...' % server_addr)

m = QueueManager(address=(server_addr,9833),authkey=b'abc')

m.connect()

task = m.get_task_queue()

result = m.get_result_queue()

for i in range(10):

try:

n = task.get(timeout = 10)

print('run task %d * %d' %(n,n))

r = '%d * %d = %d' %(n,n,n*n)

time.sleep(1)

result.put(r)

except Queue.Empty:

print('task queue is empty')

print('worker exit')

你可能感兴趣的:(python)