python分布式任务调度_Python使用multiprocessing实现一个最简单的分布式作业调度系统...

mutilprocess像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。

介绍

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信。

想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统。

实现

Job

首先创建一个Job类,为了测试简单,只包含一个job id属性

job.py

#!/usr/bin/env python

# -*- coding: utf-8 -*-

class Job:

def __init__(self, job_id):

self.job_id = job_id

Master

Master用来派发作业和显示运行完成的作业信息

master.py

#!/usr/bin/env python

# -*- coding: utf-8 -*-

from Queue import Queue

from multiprocessing.managers import BaseManager

from job import Job

class Master:

def __init__(self):

# 派发出去的作业队列

self.dispatched_job_queue = Queue()

# 完成的作业队列

self.finished_job_queue = Queue()

def get_dispatched_job_queue(self):

return self.dispatched_job_queue

def get_finished_job_queue(self):

return self.finished_job_queue

def start(self):

# 把派发作业队列和完成作业队列注册到网络上

BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue)

BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue)

# 监听端口和启动服务

manager = BaseManager(address=('0.0.0.0', 8888), authkey='jobs')

manager.start()

# 使用上面注册的方法获取队列

dispatched_jobs = manager.get_dispatched_job_queue()

finished_jobs = manager.get_finished_job_queue()

# 这里一次派发10个作业,等到10个作业都运行完后,继续再派发10个作业

job_id = 0

while True:

for i in range(0, 10):

job_id = job_id + 1

job = Job(job_id)

print('Dispatch job: %s' % job.job_id)

dispatched_jobs.put(job)

while not dispatched_jobs.empty():

job = finished_jobs.get(60)

print('Finished Job: %s' % job.job_id)

manager.shutdown()

if __name__ == "__main__":

master = Master()

master.start()

Slave

Slave用来运行master派发的作业并将结果返回

slave.py

#!/usr/bin/env python

# -*- coding: utf-8 -*-

import time

from Queue import Queue

from multiprocessing.managers import BaseManager

from job import Job

class Slave:

def __init__(self):

# 派发出去的作业队列

self.dispatched_job_queue = Queue()

# 完成的作业队列

self.finished_job_queue = Queue()

def start(self):

# 把派发作业队列和完成作业队列注册到网络上

BaseManager.register('get_dispatched_job_queue')

BaseManager.register('get_finished_job_queue')

# 连接master

server = '127.0.0.1'

print('Connect to server %s...' % server)

manager = BaseManager(address=(server, 8888), authkey='jobs')

manager.connect()

# 使用上面注册的方法获取队列

dispatched_jobs = manager.get_dispatched_job_queue()

finished_jobs = manager.get_finished_job_queue()

# 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业

while True:

job = dispatched_jobs.get(timeout=1)

print('Run job: %s ' % job.job_id)

time.sleep(1)

finished_jobs.put(job)

if __name__ == "__main__":

slave = Slave()

slave.start()

测试

分别打开三个linux终端,第一个终端运行master,第二个和第三个终端用了运行slave,运行结果如下

master

$ python master.py

Dispatch job: 1

Dispatch job: 2

Dispatch job: 3

Dispatch job: 4

Dispatch job: 5

Dispatch job: 6

Dispatch job: 7

Dispatch job: 8

Dispatch job: 9

Dispatch job: 10

Finished Job: 1

Finished Job: 2

Finished Job: 3

Finished Job: 4

Finished Job: 5

Finished Job: 6

Finished Job: 7

Finished Job: 8

Finished Job: 9

Dispatch job: 11

Dispatch job: 12

Dispatch job: 13

Dispatch job: 14

Dispatch job: 15

Dispatch job: 16

Dispatch job: 17

Dispatch job: 18

Dispatch job: 19

Dispatch job: 20

Finished Job: 10

Finished Job: 11

Finished Job: 12

Finished Job: 13

Finished Job: 14

Finished Job: 15

Finished Job: 16

Finished Job: 17

Finished Job: 18

Dispatch job: 21

Dispatch job: 22

Dispatch job: 23

Dispatch job: 24

Dispatch job: 25

Dispatch job: 26

Dispatch job: 27

Dispatch job: 28

Dispatch job: 29

Dispatch job: 30

slave1

$ python slave.py

Connect to server 127.0.0.1...

Run job: 1

Run job: 2

Run job: 3

Run job: 5

Run job: 7

Run job: 9

Run job: 11

Run job: 13

Run job: 15

Run job: 17

Run job: 19

Run job: 21

Run job: 23

slave2

$ python slave.py

Connect to server 127.0.0.1...

Run job: 4

Run job: 6

Run job: 8

Run job: 10

Run job: 12

Run job: 14

Run job: 16

Run job: 18

Run job: 20

Run job: 22

Run job: 24

以上内容是小编给大家介绍的Python使用multiprocessing实现一个最简单的分布式作业调度系统,希望对大家有所帮助!

你可能感兴趣的:(python分布式任务调度)