- MSE做多分类任务如何
用「考试打分」来类比,秒懂为啥多分类任务很少用MSE,以及硬用会出啥问题~一、多分类任务的「常规操作」:交叉熵vsMSE1.多分类任务长啥样?例子:手写数字识别(0-9共10类)、动物图片分类(猫/狗/鸟等)。目标:模型输出每个类别的概率,选概率最高的作为预测结果。2.交叉熵为啥是「标配」?输出:配合softmax激活函数,输出每个类别的概率(和为1)。判卷逻辑:看「预测概率是否接近真实类别」,比
- 逻辑回归中的损失函数:交叉熵损失详解与推导
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶逻辑回归算法机器学习ai
逻辑回归中的损失函数:交叉熵损失详解与推导关键词:逻辑回归、交叉熵损失、损失函数、二分类、多分类、极大似然估计、梯度下降摘要:本文深入解析逻辑回归中核心的交叉熵损失函数,从信息论基础出发,逐步推导二分类与多分类场景下的损失函数形式,结合极大似然估计揭示其理论本质。通过Python代码实现损失函数计算与梯度推导,辅以实战案例演示完整训练流程。同时对比均方误差等其他损失函数,阐释交叉熵在分类问题中的独
- 多分类与多标签分类的损失函数
麦格芬230
自然语言处理
使用神经网络处理多分类任务时,一般采用softmax作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。在多标签分类任务中,一般采用sigmoid作为输出层的激活函数,使用binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- 二元交叉熵损失为何与 logits 结合使用
浩瀚之水_csdn
#目标检测(理论)机器学习人工智能
先抛出个问题:二元分类任务里,为什么损失函数会和logits直接结合,而不是先通过sigmoid函数转换成概率?在PyTorch中,BCEWithLogitsLoss(二元交叉熵损失与logits结合)是一个将Sigmoid激活函数和二元交叉熵损失(BCE)合并计算的损失函数。其核心目的是在保证数值稳定性的前提下,直接处理模型输出的原始logits(未归一化的分数),而无需显式应用Sigmoid函
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- 从代码学习深度学习 - 预训练word2vec PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言辅助工具1.绘图工具(`utils_for_huitu.py`)2.数据处理工具(`utils_for_data.py`)3.训练辅助工具(`utils_for_train.py`)预训练Word2Vec-主流程1.环境设置与数据加载2.跳元模型(Skip-gramModel)2.1.嵌入层(EmbeddingLayer)2.2.定义前向传播3.训练3.1.二元交叉熵损失3.2.初始化
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- pytorch验算CrossEntropyLoss ,BCELoss 和 BCEWithLogitsLoss
咕噜咕噜day
pytorch相关CrossEntropyloBCELossBCEWithLogitsBCE_交叉熵_BCEWit
一.手动计算、log_softmax+nll_loss、nn.CrossEntropyLoss三种方式计算交叉熵:(classtorch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction=‘elementwise_mean’)功能:将输入经过softmax激活函数之后,
- 【笔记】BCEWithLogitsLoss
睡不着还睡不醒
读研日记笔记
工作原理BCEWithLogitsLoss是PyTorch中的一个损失函数,用于二分类问题。它结合了Sigmoid激活函数和二元交叉熵(BinaryCrossEntropy,BCE)损失在一个类中。这不仅简化了代码,而且通过数值稳定性优化提高了模型训练的效率和效果。使用方法importtorchimporttorch.nnasnn#假设我们有一个批次大小为32,单通道,高度和宽度分别为64的图像i
- AI-02a5a2.神经网络的学习
一年春又来
人工智能神经网络学习
神经网络的学习损失函数神经网络以某个指标为线索寻找最优权重参数。神经网络的学习中所用的指标称为损失函数(lossfunction)这个损失函数可以使用任意函数,但一般用均方误差和交叉熵误差等。损失函数是表示神经网络性能的“恶劣程度”的指标,即当前的神经网络对监督数据在多大程度上不拟合,在多大程度上不一致。之所以不能用识别精度作为指标,是因为这样一来绝大多数地方的导数都会变为0,导致参数无法更新。均
- 深度学习-损失函数 python opencv源码(史上最全)
博导ai君
深度学习教学-附源码深度学习人工智能计算机视觉python
目录定义种类如何选择损失函数?平方(均方)损失函数(MeanSquaredError,MSE)均方根误差交叉熵对数损失笔记回馈逻辑回归中一些注意事项:定义损失函数又叫误差函数、成本函数、代价函数,用来衡量算法的运行情况,用符号L表示。假设我们的回归函数是:y=wx+b,那么损失函数的作用就是用来获取误差,然后来更新w和b,从而使预测值y更贴近真实值。也就是训练过程就是让这个损失越来越小的过程(最小
- 基于Partial Cross Entropy的弱监督语义分割实战指南
Loving_enjoy
计算机学科论文创新点深度学习机器学习人工智能
一、问题背景:弱监督学习的挑战在计算机视觉领域,语义分割任务面临最大的挑战之一是**标注成本**。以Cityscapes数据集为例,单张图像的像素级标注需要约90分钟人工操作。这催生了弱监督学习(WeaklySupervisedLearning)的研究方向,其中partialcrossentropyloss(部分交叉熵损失)成为重要的技术手段。###弱监督的常见形式1.图像级标签(Image-le
- 基于狮群优化的对称交叉熵图像多阈值分割python
图像算法打怪
图像分割python开发语言
基于狮群优化的对称交叉熵图像多阈值分割python文章目录基于狮群优化的对称交叉熵图像多阈值分割python1.对称交叉熵阈值分割原理2.基于狮群优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于对称交叉熵的图像分割,并且应用狮群算法进行阈值寻优。1.对称交叉熵阈值分割原理考虑到Li等人提出的交叉熵不具备距离对称性,Brink等给出了对称交叉熵的概念,其实质上是将前
- 【机器学习】优化器/SAM
LOST P
机器学习机器学习人工智能算法
损失函数与优化器在机器学习中,优化器是用于更新和优化模型参数(如神经网络中的权重和偏置)的算法,即根据损失函数的梯度信息,指导模型参数的更新,使其逐步逼近最佳状态,从而达到更高的预测准确性或泛化能力。损失函数(例如均方误差、交叉熵等)用于衡量模型预测结果与实际值之间的差异。优化器的任务是通过不断调整模型参数,使损失函数的值逐渐降低,达到最小化的效果。1.优化器的工作原理优化器**通常基于梯度下降(
- 机器学习必知:模型误差+面试常见问题(看它就够了)
心想事“程”
机器学习机器学习算法人工智能
一、模型误差相关知识详解1.模型误差的定义和衡量标准模型误差是评估模型预测准确性的关键指标,通常通过定义损失函数进行量化,常见的损失函数如均方误差(MSE)、交叉熵损失等。在训练阶段,利用梯度下降法等优化算法对模型参数进行迭代调整,目标是最小化损失函数,使模型预测值尽可能接近真实值;预测阶段则直接使用训练好的模型对新数据进行推理,输出预测结果。2.偏差和方差的定义及例子偏差用于衡量模型预测结果偏离
- Python----深度学习(Softmax与交叉熵)
蹦蹦跳跳真可爱589
深度学习Pythonpython深度学习开发语言
一、SoftmaxSoftmax是一种常见的激活函数,可以将计算出来的数值通过公式变成概率,通常用在分类中。Softmax从字面上来说,可以分成soft和max两个部分。Max顾名思义就是最大值的意思。Softmax的核心在于soft,而soft有软的含义,与之相对的是hard硬。很多场景中需要我们找出数组所有元素中值最大的元素,实质上都是求的hardmax。hardmax最大的特点就是只选出其中
- 交叉熵在机器学习中的应用解析
callinglove
深度学习损失函数交叉熵
文章目录核心概念香农信息量(自信息)熵(Entropy)KL散度(Kullback-LeiblerDivergence)交叉熵在机器学习中的应用作为损失函数对于二分类(BinaryClassification):对于多分类(MulticlassClassification):多标签分类(Multi-labelClassification)其他应用场景实例手撸计算实现示例(PyTorch)注意事项直
- nlp面试重点
heine162
自然语言处理
深度学习基本原理:梯度下降公式,将损失函数越来越小,最终预测值和实际值误差比较小。交叉熵:-p(x)logq(x),p(x)是one-hot形式。如果不使用softmax计算交叉熵,是不行的。损失函数可能会非常大,或者预测的概率是[-0.1,0.3,0.5],log不接收负值。pytorch默认给你加softmax。如果softmax改成sigmoid也不行,如sigmoid过完以后,[0.9,0
- 为什么不同的损失函数可以提升模型性能?
RoyKing_
笔记初心与计算机python
不同的损失函数可以提升模型性能的原因在于,损失函数是模型优化的核心目标,它直接定义了模型在训练过程中需要最小化的误差或偏差。通过设计不同的损失函数,可以针对具体任务的特点、数据分布的特性以及模型的目标需求进行更精确的优化,从而提升模型的性能。1.不同任务需要不同的优化目标不同的任务(如分类、回归、生成等)对模型的要求不同,因此需要设计适合任务特点的损失函数。-分类任务:交叉熵损失(Cross-En
- 深度学习入门(三):神经网络的学习
WhyNot?
深度学习深度学习神经网络学习
文章目录前言人类思考VS机器学习VS深度学习基础术语损失函数常用的损失函数均方误差MSE(MeanSquareError)交叉熵误差(CrossEntropyError)mini-batch学习为何要设定损失函数数值微分神经网络学习算法的实现两层神经网络的类参考资料前言机器学习的过程通常分为学习(从训练数据中自动获取权重参数的过程)和推理(利用学习到的权重参数对新的数据进行预测)两个环节。本文将主
- Pytorch中torch.nn.functional模块介绍
小白的高手之路
Pytorch实战深度学习(DL)pytorch深度学习人工智能机器学习pythoncnn卷积神经网络
1、torch.nn.functional模块介绍1.1模块功能概述torch.nn.functional是PyTorch的核心模块之一,提供函数式接口实现神经网络操作,涵盖以下功能:激活函数:如ReLU、Sigmoid、Tanh卷积运算:包括1D/2D/3D卷积、转置卷积池化操作:最大池化、平均池化、自适应池化正则化方法:Dropout、BatchNorm损失函数:交叉熵、均方误差张量操作:填充
- 掩码图像建模 (MIM) 中的对数似然与交叉熵
frostmelody
深度学习LLM人工智能深度学习计算机视觉
掩码图像建模(MIM)中的对数似然与交叉熵1.问题背景在掩码图像建模(MIM)任务中,模型需要预测被遮蔽的图像块对应的视觉词元(可以理解为图像块的离散类别标签)。具体来说:每个被遮蔽的图像块i∈Mi\inMi∈M的真实标签是ziz_izi(即它原本的视觉词元类别)。模型通过Transformer编码器生成隐藏向量hLih_L^ihLi,然后通过一个分类器(参数为Wc,bcW_c,b_cWc,bc)
- 如何直观理解交叉熵及其优势?
Zebul博
以下对数符号有误,见原文链接:https://blog.csdn.net/cherrylvlei/article/details/53038603导语在统计学中,损失函数是一种衡量系统错误程度的函数。而在有监督学习模型里,损失函数则是衡量模型对样本预测值与样本真实标签之间差异程度的方法。最近用到了交叉熵,觉得有必要弄明白交叉熵到底是什么原理及优势,因此查了查资料,并结合个人理解在这里做一下讲解,如
- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 详细解释交叉熵损失函数(面试题200合集)
快撑死的鱼
人工智能机器学习
非常抱歉,我在之前的回答中确实没有严格遵循您指定的公式格式要求。感谢您的提醒!以下是修正后的版本,我将确保:内联公式使用$...$表示,例如a+b=ca+b=ca+b=c,嵌入在文本中。块级公式使用$$...$$表示,例如:E=mc2E=mc^2E=mc2我将重新整理并严格按照要求格式化之前的回答,同时保持内容清晰简洁。交叉熵损失函数的详细解释交叉熵(Cross-Entropy)损失函数是机器学习
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc