springboot整合elasticsearch+ik分词器+kibana

SpringBoot整合Elasticsearch+IK+Kibana

ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。

Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

安装相关软件

软件名称 软件版本 下载地址
Elasticsearch 6.2.4 elasticsearch官网下载
IK中文分词器 6.2.4 ik分词器官网下载
kibana 6.2.4 kibana官网下载

1,安装Elasticsearch

springboot整合elasticsearch+ik分词器+kibana_第1张图片

安装教程百度一搜一大把,这里就不作详细解释,只说明如下几点

  • 修改jvm.options的内存分配参数,否则容易造成内存不足的启动失败问题
  • 修改elasticsearch.yml配置文件,修改地址,端口,节点名称等信息

注意:elasticsearch自带jdk,注意Linux环境中的jdk和自带的jdk冲突!

安装完成之后启动es,默认启动端口为9200

./bin/elasticsearch
./bin/elasticsearch -d  # 后台运行

浏览器访问: http://ip:9200/ 会得到相应的版本信息,如

{
     
	"name": "Bb-td48",
	"cluster_name": "elasticsearch",
	"cluster_uuid": "_IM0iQAeToWALU0tq7rsZQ",
	"version": {
     
	"number": "6.2.4",
	"build_hash": "ccec39f",
	"build_date": "2018-04-12T20:37:28.497551Z",
	"build_snapshot": false,
	"lucene_version": "7.2.1",
	"minimum_wire_compatibility_version": "5.6.0",
	"minimum_index_compatibility_version": "5.0.0"
	},
	"tagline": "You Know, for Search"
}

2,ES安装IK分词器

为什么要在elasticsearch中要使用ik这样的中文分词呢,那是因为es提供的分词是英文分词,对于中文的分词就做的非常不好了,因此我们需要一个中文分词器来用于搜索和使用。今天我们就尝试安装下IK分词。

1、去github 下载对应的分词插件,根据不同版本下载不同的分词插件

https://github.com/medcl/elasticsearch-analysis-ik/releases

2、到es的plugins 目录创建文件夹

cd your-es-root/plugins/ && mkdir ik

3、解压ik分词插件到ik文件夹

unzip elasticsearch-analysis-ik-6.4.3.zip

然后重新启动ES,就可以看到分词器已经自动被加载了
springboot整合elasticsearch+ik分词器+kibana_第2张图片

3,ES安装Kibana(可视化工具)

Kibana可以到官网去下载,不过网速都是特别感人,这里提供一个华为云镜像地址,下载速度嗖嗖的!

https://mirrors.huaweicloud.com/kibana/

里面有所有版本的Kibana提供下载!

解压

tar -zxvf kibana-6.3.2-linux-x86_64.tar.gz

修改配置文件

vim config/kibana.yml
# 放开注释,将默认配置改成如下:
server.port: 5601
server.host: "0.0.0.0"
elasticsearch.url: "http://192.168.202.128:9200"
kibana.index: ".kibana"

启动

bin/kibana

启动失败 报错如下

在这里插入图片描述

这个很明显是没有权限,一次切换root用户 给es用户这个文件的权限

chown -R 用户名:用户名 /usr/local/elasticsearch/kibana/kibana-7.8.0/

但是下面的警告出事了,这里并不是找不到啥导致报错,而是服务器内存不足造成的,所以,我选择放弃!

相信不用kibana照样玩转elasticsearch!

4,springboot工程集成elasticsearch

(1)整合maven依赖


      org.springframework.boot
      spring-boot-starter-data-elasticsearch

     还有lombok,自己加一下

上面的是整合依赖,由于测试等原因,加上其他的依赖

		
        
            org.springframework.boot
            spring-boot-starter-data-elasticsearch
        
        
            org.projectlombok
            lombok
        
        
            junit
            junit
        
        
            org.springframework.boot
            spring-boot-starter-test
        
        
        
            commons-beanutils
            commons-beanutils
            1.9.3
        

(2)application.yml

spring:
  data:
    elasticsearch:
      cluster-name: my-application
      cluster-nodes: 101.201.101.206:9300

(3)实体类

@Data
@AllArgsConstructor
@NoArgsConstructor
@Document(indexName = "item", type = "docs", shards = 1, replicas = 0)
public class Item {
     
    @Id
    private Long id;

    @Field(type = FieldType.Text, analyzer = "ik_max_word")
    private String title; //标题

    @Field(type = FieldType.Keyword)
    private String category;// 分类

    @Field(type = FieldType.Keyword)
    private String brand; // 品牌

    @Field(type = FieldType.Double)
    private Double price; // 价格

    @Field(index = false, type = FieldType.Keyword)
    private String images; // 图片地址
}

Spring Data通过注解来声明字段的映射属性,有下面的三个注解:

  • @Document

    作用在类,标记实体类为文档对象,一般有两个属性

    • indexName:对应索引库名称
    • type:对应在索引库中的类型
    • shards:分片数量,默认5
    • replicas:副本数量,默认1
  • @Id 作用在成员变量,标记一个字段作为id主键

  • @Field

    作用在成员变量,标记为文档的字段,并指定字段映射属性:

    • type:字段类型,是是枚举:FieldType
    • index:是否索引,布尔类型,默认是true
    • store:是否存储,布尔类型,默认是false
    • analyzer:分词器名称

(4)repository

需要提供一个repository仓库

public interface ItemRepository extends ElasticsearchRepository<Item, Long> {
     

    /**
     * 根据价格区间查询
     *
     * @param price1
     * @param price2
     * @return
     */
    List<Item> findByPriceBetween(double price1, double price2);
}

(5)测试

这里对elasticsearch做增删改查!

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringbootElasticsearchApplicationTests {
     

    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

    @Autowired
    private ItemRepository itemRepository;

    /**
     * 创建索引
     */
    @Test
    public void createIndex() {
     
        // 创建索引,会根据Item类的@Document注解信息来创建
        elasticsearchTemplate.createIndex(Item.class);
        // 配置映射,会根据Item类中的id、Field等字段来自动完成映射
        elasticsearchTemplate.putMapping(Item.class);
    }

    /**
     * 删除索引
     */
    @Test
    public void deleteIndex() {
     
        elasticsearchTemplate.deleteIndex("item");
    }

    /**
     * 新增
     */
    @Test
    public void insert() {
     
        Item item = new Item(1L, "小米手机7", "手机", "小米", 2999.00, "https://img12.360buyimg.com/n1/s450x450_jfs/t1/14081/40/4987/124705/5c371b20E53786645/c1f49cd69e6c7e6a.jpg");
        itemRepository.save(item);
    }

    /**
     * 批量新增
     */
    @Test
    public void insertList() {
     
        List<Item> list = new ArrayList<>();
        list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3999.00, "https://img12.360buyimg.com/n1/s450x450_jfs/t1/14081/40/4987/124705/5c371b20E53786645/c1f49cd69e6c7e6a.jpg"));
        list.add(new Item(3L, "华为META20", "手机", "华为", 4999.00, "https://img12.360buyimg.com/n1/s450x450_jfs/t1/14081/40/4987/124705/5c371b20E53786645/c1f49cd69e6c7e6a.jpg"));
        list.add(new Item(4L, "iPhone X", "手机", "iPhone", 5100.00, "https://img12.360buyimg.com/n1/s450x450_jfs/t1/14081/40/4987/124705/5c371b20E53786645/c1f49cd69e6c7e6a.jpg"));
        list.add(new Item(5L, "iPhone XS", "手机", "iPhone", 5999.00, "https://img12.360buyimg.com/n1/s450x450_jfs/t1/14081/40/4987/124705/5c371b20E53786645/c1f49cd69e6c7e6a.jpg"));
        // 接收对象集合,实现批量新增
        itemRepository.saveAll(list);
    }

    /**
     * 修改
     *
     * :修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。
     */

    /**
     * 删除所有
     */
    @Test
    public void delete() {
     
        itemRepository.deleteAll();
    }

    /**
     * 基本查询
     */
    @Test
    public void query() {
     
        // 查询全部,并按照价格降序排序
        Iterable<Item> items = itemRepository.findAll(Sort.by("price").descending());
        items.forEach(item -> System.out.println("item = " + item));
    }

    /**
     * 自定义方法
     */
    @Test
    public void queryByPriceBetween() {
     
        // 根据价格区间查询
        List<Item> list = itemRepository.findByPriceBetween(5000.00, 6000.00);
        list.forEach(item -> System.out.println("item = " + item));
    }

    /**
     * 自定义查询
     */
    @Test
    public void search() {
     
        // 构建查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 添加基本分词查询
        queryBuilder.withQuery(QueryBuilders.matchQuery("title", "小米手机"));
        // 搜索,获取结果
        Page<Item> items = itemRepository.search(queryBuilder.build());
        // 总条数
        long total = items.getTotalElements();
        System.out.println("total = " + total);
        items.forEach(item -> System.out.println("item = " + item));
    }

    /**
     * 分页查询
     */
    @Test
    public void searchByPage() {
     
        // 构建查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 添加基本分词查询
        queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
        // 分页:
        int page = 0;
        int size = 2;
        queryBuilder.withPageable(PageRequest.of(page, size));
        // 搜索,获取结果
        Page<Item> items = itemRepository.search(queryBuilder.build());
        long total = items.getTotalElements();
        System.out.println("总条数 = " + total);
        System.out.println("总页数 = " + items.getTotalPages());
        System.out.println("当前页:" + items.getNumber());
        System.out.println("每页大小:" + items.getSize());
        items.forEach(item -> System.out.println("item = " + item));
    }

    /**
     * 排序
     */
    @Test
    public void searchAndSort() {
     
        // 构建查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 添加基本分词查询
        queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
        // 排序
        queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.ASC));
        // 搜索,获取结果
        Page<Item> items = this.itemRepository.search(queryBuilder.build());
        // 总条数
        long total = items.getTotalElements();
        System.out.println("总条数 = " + total);
        items.forEach(item -> System.out.println("item = " + item));
    }

    /**
     * 聚合为桶
     */
    @Test
    public void testAgg() {
     
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 不查询任何结果
        queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{
     ""}, null));
        // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
        queryBuilder.addAggregation(AggregationBuilders.terms("brands").field("brand"));
        // 2、查询,需要把结果强转为AggregatedPage类型
        AggregatedPage<Item> aggPage = (AggregatedPage<Item>) itemRepository.search(queryBuilder.build());
        // 3、解析
        // 3.1、从结果中取出名为brands的那个聚合,
        // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
        StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
        // 3.2、获取桶
        List<StringTerms.Bucket> buckets = agg.getBuckets();
        // 3.3、遍历
        for (StringTerms.Bucket bucket : buckets) {
     
            // 3.4、获取桶中的key,即品牌名称
            System.out.println(bucket.getKeyAsString());
            // 3.5、获取桶中的文档数量
            System.out.println(bucket.getDocCount());
        }
    }

    /**
     * 嵌套聚合,求平均值
     */
    @Test
    public void testSubAgg() {
     
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 不查询任何结果
        queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{
     ""}, null));
        // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
        queryBuilder.addAggregation(
                AggregationBuilders.terms("brands").field("brand")
                        .subAggregation(AggregationBuilders.avg("priceAvg").field("price")) // 在品牌聚合桶内进行嵌套聚合,求平均值
        );
        // 2、查询,需要把结果强转为AggregatedPage类型
        AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
        // 3、解析
        // 3.1、从结果中取出名为brands的那个聚合,
        // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
        StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
        // 3.2、获取桶
        List<StringTerms.Bucket> buckets = agg.getBuckets();
        // 3.3、遍历
        for (StringTerms.Bucket bucket : buckets) {
     
            // 3.4、获取桶中的key,即品牌名称  3.5、获取桶中的文档数量
            System.out.println(bucket.getKeyAsString() + ",共" + bucket.getDocCount() + "台");

            // 3.6.获取子聚合结果:
            InternalAvg avg = (InternalAvg) bucket.getAggregations().asMap().get("priceAvg");
            System.out.println("平均售价:" + avg.getValue());
        }
    }
}

(6)搜索分词高亮显示

下面是测试类中的一个查询方法,并进行高亮显示

@org.junit.Test
    public void search() {
     
        // 构建查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        // 添加基本分词查询
        queryBuilder.withQuery(QueryBuilders.matchQuery("title", "搜索引擎"));

        HighlightBuilder.Field hfield= new HighlightBuilder.Field("title")
                .preTags("")
                .postTags("")
                .fragmentSize(100);
        queryBuilder.withHighlightFields(hfield);

        // 搜索,获取结果
        Page<Item> items = itemRepository.search(queryBuilder.build());
        // 总条数
        long total = items.getTotalElements();
        System.out.println("total = " + total);
        items.forEach(item -> System.out.println("item = " + item));
    }

但是没有效果,百度发现,这个版本的mapper实现类没有设置高亮显示的字段,改正后的结果

新建一个MyResultMapper ,继承AbstractResultMapper 并对其方法进行重写,结果如下

其中需要上面的BeanUtils的依赖!

package com.example.elasticsearch.springbootelasticsearch.repository;
 
import com.fasterxml.jackson.core.JsonEncoding;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;
import org.apache.commons.beanutils.PropertyUtils;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.get.MultiGetItemResponse;
import org.elasticsearch.action.get.MultiGetResponse;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.common.document.DocumentField;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.ElasticsearchException;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.ScriptedField;
import org.springframework.data.elasticsearch.core.AbstractResultMapper;
import org.springframework.data.elasticsearch.core.DefaultEntityMapper;
import org.springframework.data.elasticsearch.core.EntityMapper;
import org.springframework.data.elasticsearch.core.aggregation.AggregatedPage;
import org.springframework.data.elasticsearch.core.aggregation.impl.AggregatedPageImpl;
import org.springframework.data.elasticsearch.core.mapping.ElasticsearchPersistentEntity;
import org.springframework.data.elasticsearch.core.mapping.ElasticsearchPersistentProperty;
import org.springframework.data.elasticsearch.core.mapping.SimpleElasticsearchMappingContext;
import org.springframework.data.mapping.context.MappingContext;
import org.springframework.stereotype.Component;
import org.springframework.util.Assert;
import org.springframework.util.StringUtils;
 
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.nio.charset.Charset;
import java.util.*;

@Component
public class MyResultMapper extends AbstractResultMapper {
     
 
	private final MappingContext<? extends ElasticsearchPersistentEntity<?>, ElasticsearchPersistentProperty> mappingContext;
 
	public MyResultMapper() {
     
		this(new SimpleElasticsearchMappingContext());
	}
 
	public MyResultMapper(MappingContext<? extends ElasticsearchPersistentEntity<?>, ElasticsearchPersistentProperty> mappingContext) {
     
		
		super(new DefaultEntityMapper(mappingContext));
		
		Assert.notNull(mappingContext, "MappingContext must not be null!");
		
		this.mappingContext = mappingContext;
	}
 
	public MyResultMapper(EntityMapper entityMapper) {
     
		this(new SimpleElasticsearchMappingContext(), entityMapper);
	}
 
	public MyResultMapper(
			MappingContext<? extends ElasticsearchPersistentEntity<?>, ElasticsearchPersistentProperty> mappingContext,
			EntityMapper entityMapper) {
     
		
		super(entityMapper);
		
		Assert.notNull(mappingContext, "MappingContext must not be null!");
		
		this.mappingContext = mappingContext;
	}
 
	@Override
	public <T> AggregatedPage<T> mapResults(SearchResponse response, Class<T> clazz, Pageable pageable) {
     
		
		long totalHits = response.getHits().getTotalHits();
		float maxScore = response.getHits().getMaxScore();
 
		List<T> results = new ArrayList<>();
		for (SearchHit hit : response.getHits()) {
     
			if (hit != null) {
     
				T result = null;
				if (!StringUtils.isEmpty(hit.getSourceAsString())) {
     
					result = mapEntity(hit.getSourceAsString(), clazz);
				} else {
     
					result = mapEntity(hit.getFields().values(), clazz);
				}
 
				setPersistentEntityId(result, hit.getId(), clazz);
				setPersistentEntityVersion(result, hit.getVersion(), clazz);
				setPersistentEntityScore(result, hit.getScore(), clazz);
				
				populateScriptFields(result, hit);
 
                results.add(result);
			}
		}
 
		return new AggregatedPageImpl<T>(results, pageable, totalHits, response.getAggregations(), response.getScrollId(),
				maxScore);
	}
 
    private String concat(Text[] texts) {
     
        StringBuilder sb = new StringBuilder();
        for (Text text : texts) {
     
            sb.append(text.toString());
        }
        return sb.toString();
    }
 
 
	private <T> void populateScriptFields(T result, SearchHit hit) {
     
		if (hit.getFields() != null && !hit.getFields().isEmpty() && result != null) {
     
			for (java.lang.reflect.Field field : result.getClass().getDeclaredFields()) {
     
				ScriptedField scriptedField = field.getAnnotation(ScriptedField.class);
				if (scriptedField != null) {
     
					String name = scriptedField.name().isEmpty() ? field.getName() : scriptedField.name();
					DocumentField searchHitField = hit.getFields().get(name);
					if (searchHitField != null) {
     
						field.setAccessible(true);
						try {
     
							field.set(result, searchHitField.getValue());
						} catch (IllegalArgumentException e) {
     
							throw new ElasticsearchException(
									"failed to set scripted field: " + name + " with value: " + searchHitField.getValue(), e);
						} catch (IllegalAccessException e) {
     
							throw new ElasticsearchException("failed to access scripted field: " + name, e);
						}
					}
				}
			}
		}
 
        for (HighlightField field : hit.getHighlightFields().values()) {
     
            try {
     
                PropertyUtils.setProperty(result, field.getName(), concat(field.fragments()));
            } catch (InvocationTargetException | IllegalAccessException | NoSuchMethodException e) {
     
                throw new ElasticsearchException("failed to set highlighted value for field: " + field.getName()
                        + " with value: " + Arrays.toString(field.getFragments()), e);
            }
        }
	}
 
	private <T> T mapEntity(Collection<DocumentField> values, Class<T> clazz) {
     
		return mapEntity(buildJSONFromFields(values), clazz);
	}
 
	private String buildJSONFromFields(Collection<DocumentField> values) {
     
		JsonFactory nodeFactory = new JsonFactory();
		try {
     
			ByteArrayOutputStream stream = new ByteArrayOutputStream();
			JsonGenerator generator = nodeFactory.createGenerator(stream, JsonEncoding.UTF8);
			generator.writeStartObject();
			for (DocumentField value : values) {
     
				if (value.getValues().size() > 1) {
     
					generator.writeArrayFieldStart(value.getName());
					for (Object val : value.getValues()) {
     
						generator.writeObject(val);
					}
					generator.writeEndArray();
				} else {
     
					generator.writeObjectField(value.getName(), value.getValue());
				}
			}
			generator.writeEndObject();
			generator.flush();
			return new String(stream.toByteArray(), Charset.forName("UTF-8"));
		} catch (IOException e) {
     
			return null;
		}
	}
 
	@Override
	public <T> T mapResult(GetResponse response, Class<T> clazz) {
     
		T result = mapEntity(response.getSourceAsString(), clazz);
		if (result != null) {
     
			setPersistentEntityId(result, response.getId(), clazz);
			setPersistentEntityVersion(result, response.getVersion(), clazz);
		}
		return result;
	}
 
	@Override
	public <T> LinkedList<T> mapResults(MultiGetResponse responses, Class<T> clazz) {
     
		LinkedList<T> list = new LinkedList<>();
		for (MultiGetItemResponse response : responses.getResponses()) {
     
			if (!response.isFailed() && response.getResponse().isExists()) {
     
				T result = mapEntity(response.getResponse().getSourceAsString(), clazz);
				setPersistentEntityId(result, response.getResponse().getId(), clazz);
				setPersistentEntityVersion(result, response.getResponse().getVersion(), clazz);
				list.add(result);
			}
		}
		return list;
	}
 
	private <T> void setPersistentEntityId(T result, String id, Class<T> clazz) {
     
		
		if (clazz.isAnnotationPresent(Document.class)) {
     
			
			ElasticsearchPersistentEntity<?> persistentEntity = mappingContext.getRequiredPersistentEntity(clazz);
			ElasticsearchPersistentProperty idProperty = persistentEntity.getIdProperty();
 
			// Only deal with String because ES generated Ids are strings !
			if (idProperty != null && idProperty.getType().isAssignableFrom(String.class)) {
     
				persistentEntity.getPropertyAccessor(result).setProperty(idProperty, id);
			}
		}
	}
 
	private <T> void setPersistentEntityVersion(T result, long version, Class<T> clazz) {
     
		
		if (clazz.isAnnotationPresent(Document.class)) {
     
			
			ElasticsearchPersistentEntity<?> persistentEntity = mappingContext.getPersistentEntity(clazz);
			ElasticsearchPersistentProperty versionProperty = persistentEntity.getVersionProperty();
 
			// Only deal with Long because ES versions are longs !
			if (versionProperty != null && versionProperty.getType().isAssignableFrom(Long.class)) {
     
				// check that a version was actually returned in the response, -1 would indicate that
				// a search didn't request the version ids in the response, which would be an issue
				Assert.isTrue(version != -1, "Version in response is -1");
				persistentEntity.getPropertyAccessor(result).setProperty(versionProperty, version);
			}
		}
	}
 
	private <T> void setPersistentEntityScore(T result, float score, Class<T> clazz) {
     
 
		if (clazz.isAnnotationPresent(Document.class)) {
     
 
			ElasticsearchPersistentEntity<?> entity = mappingContext.getRequiredPersistentEntity(clazz);
 
			if (!entity.hasScoreProperty()) {
     
				return;
			}
 
			entity.getPropertyAccessor(result) //
					.setProperty(entity.getScoreProperty(), score);
		}
	}
}

然后再运行上面的自定义查询方法,控制台打印效果如下图
springboot整合elasticsearch+ik分词器+kibana_第3张图片

5,springboot+elasticsearch实战

虎你呢,没了!再见!

上面的已经够用了,兄弟萌!

你可能感兴趣的:(SpringBoot,搜索引擎,elasticsearch,搜索引擎,java,lucene)