第一讲-tensorflow搭建完整的神经网络步骤(附完整代码)

目标:神经网络实现鸢尾花分类问题

搭建神经网络步骤:准备数据--》搭建网络--》参数优化 ---》 测试效果 ---》 Acc/loss可视化

  • 准备数据
  1. 数据集读入
  2. 数据集乱序
  3. 生成不相交的训练集和测试集
  4. 配成(输入特征,标签)对,每次读入一小撮(batch)  
  • 搭建网络
  1. 定义神经网络中所有可训练参数
  • 参数优化
  1. 嵌套循环迭代,with结构更新参数,显示当前loss
  • 测试效果
  1. 计算当前参数前向传播后的准确率,显示当前acc 
  • Acc/loss可视化

下面是一个搭建神经网络实现鸢尾花分类的完整代码:

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1                    # 学习率为0.1
train_loss_results = []          # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []           # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500         # 循环500轮
loss_all = 0         # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):                          #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:                 # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1           # 神经网络乘加运算
            y = tf.nn.softmax(y)            # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)           # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))       # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算的loss累加,为后续求loss平均值提供数据,这样loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])               # 参数w1自更新
        b1.assign_sub(lr * grads[1])             # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)             # 将4个step的loss求平均记录在此变量中
    loss_all = 0                                # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")


# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

执行结果:

运行结果:
Epoch 0, loss: 0.2821310982108116
Test_acc: 0.16666666666666666
--------------------------------------
Epoch 1, loss: 0.25459614023566246
Test_acc: 0.16666666666666666
--------------------------------------
Epoch 2, loss: 0.22570250183343887
Test_acc: 0.16666666666666666
--------------------------------------
Epoch 3, loss: 0.21028400212526321
Test_acc: 0.16666666666666666
--------------------------------------
Epoch 4, loss: 0.19942265003919601
Test_acc: 0.16666666666666666
--------------------------------------
Epoch 5, loss: 0.18873638287186623
Test_acc: 0.5
--------------------------------------
。。。
。。。

Epoch 498, loss: 0.03232627175748348
Test_acc: 1.0
--------------------------
Epoch 499, loss: 0.0323002771474421
Test_acc: 1.0
--------------------------

可视化结果:

第一讲-tensorflow搭建完整的神经网络步骤(附完整代码)_第1张图片    第一讲-tensorflow搭建完整的神经网络步骤(附完整代码)_第2张图片

 

你可能感兴趣的:(Tensorflow,tensorflow,python)