无标题文章

Lab 1 Homework 1.4 1.5

Based on the knowledge of discrete system properties, we analyzed several systems and proved our predictions with MATLAB.

1.4(a) The system y[n] = sin((π/2)x[n]) is not linear. Use the signals x1[n] =δ[n] and x2[n] = 2δ[n] to demonstrate how the system violates linearity.
MATLAB code
 %1.4 problem (a)
n = [-3 : 3];
x1 = [0 0 0 1 0 0 0];
% let x1 be an unit impulse signal
x2 = 2*x1;
% use x2 to testify the system
y1 = sin((pi/2)*x1);
y2 = sin((pi/2)*x2);

% plot x1 x2 y1 and y2
subplot(4,1,1);
stem(n,x1)
title('x1[n]');

subplot(4,1,2);
stem(n,y1)
title('y1[n]');

subplot(4,1,3);
stem(n,x2)
title('x2[n]');

subplot(4,1,4);
stem(n,y2)
title('y2[n]'); 
Result
无标题文章_第1张图片
1.4a.png

Observe the second and the forth image. If the system is linear, then for x2[n] = 2x1[n], y2[n] should be 2y1[n], however, the result doesn't match the assumption.

1.4(b) The system y[n] = x[n] + x[n+1] is not causal. Use x[n] = u[n] to demonstrate this.
MATLAB code
% 1.4 problem(b)
n1 = [-5:9];
x = [zeros(1,5) ones(1,10)];
subplot(3,1,1);
stem(n1,x)
title('x[n]')
x1 = [zeros(1,4) ones(1,11)];
subplot(3,1,2);
stem(n1,x1) 
title('x[n+1]')
y = [x] + [x1];
subplot(3,1,3);
stem(n1,y)
title('y[n]')
Result
无标题文章_第2张图片
1.4b.png

For example, for y[-1]=x[-1]+x[0], the system requires future data x[0], so it is not causal.

1.4(c) Prove the system y[n] = log(x[n]) is not stable
MATLAB code
%1.4 problem(c)
n = [0:50];
x = 2*sin(n);
y = log(x);
subplot(2,1,1);
stem(n,x)
subplot(2,1,2);
stem(n,y)
Result
无标题文章_第3张图片
1.4c.png

The upper one is x[n] = sin[n] which is a bounded signal, while the lower one is the output of this signal by the system, we can tell the output is not bounded. So the system is not stable.

1.4(d) Prove the system in part (a) is not invertible.
MATLAB code
%1.4 problem(d)
n = [1:10];
x = [1 2 3 4 5 6 7 8 9 0];
y = sin((pi/2)*x);
stem(n,y)
Result
无标题文章_第4张图片
1.4d.png

When the input n includes 2 4 6 ... and 2k, the system gives the same output: zero. So the system is not inversible.

1.4(e) Analyze y[n] = x^3[n] and state whether it is linear, time invariant, causal, stable and invertible.
The conclusion

for y[n] = x^3[n] , it is not linear, but is time invariant, causal, stable and invertible.

MATLAB code
n = [-2 : 2];
x1 = [-1 0 1 0 1]; x2 = 2*x1;
y1 = x1.^3; y2 = x2.^3;
subplot(4,1,1); stem(n,x1)
title('x1[n]');
subplot(4,1,2); stem(n,y1)
title('y1[n]');
subplot(4,1,3); stem(n,x2)
title('x2[n]');
subplot(4,1,4); stem(n,y2)
title('y2[n]');
Result
无标题文章_第5张图片
1.4e_linear.png
1.5(a)
无标题文章_第6张图片
1.5 (a).png
1.5(b)
无标题文章_第7张图片
1.5(b)new.png
1.5(c)
无标题文章_第8张图片
1.5(c)a.png
无标题文章_第9张图片
1.5(c)b.png
1.5(d)
无标题文章_第10张图片
1.5(d) alpha.png
无标题文章_第11张图片
1.5(d).png

你可能感兴趣的:(无标题文章)