- 大屏自适应终极方案:基于比例缩放的完美适配实践(Vue3版)
FFF-X
html5javascript
需求背景在数据可视化大屏开发中,我们常面临这样的挑战:如何让1920*1080的设计稿在不同分辨率设备上完美呈现?传统的响应式布局难以应对复杂的大屏元素排布,本文介绍一种基于CSS3变换的终极适配方案实现思路本方案的核心是动态比例缩放,通过以下关键步骤实现:基准比例锁定:基于设计稿宽高比(16:9)建立基准比例视口实时检测:通过resize事件监听窗口变化智能比例判断:当视口更宽时:保持高度基准,
- 2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享
摘要随着智能优化算法的不断发展,解决高维、复杂的优化问题已成为研究的重要课题。雪雁算法(SnowGeeseAlgorithm,SGA)作为一种新兴的自然启发式优化算法,以其高效的全局搜索能力受到了广泛关注。然而,雪雁算法在处理多峰、多约束和高维复杂问题时,仍面临收敛速度较慢和易陷入局部最优解的问题。为此,本文提出了一种改进型雪雁算法(ISGA),通过引入自适应权重调整机制和混合局部搜索策略,增强了
- 《基于自适应正负样本对比学习的特征提取框架》-核心公式提炼简洁版 2022年neural networks
阳光明媚大男孩
学习深度学习人工智能论文笔记
论文源地址以下是从文档中提取的关于“基于对比学习的特征提取框架(CL-FEFA)”中正负样本对比学习实现的技术细节,包括详细的数学公式、特征提取过程以及特征表示方式的说明。1.正负样本的定义与构造在CL-FEFA框架中,正负样本的定义是动态且自适应的,基于特征提取的结果,而不是预先固定的。这种自适应性是CL-FEFA区别于传统对比学习(如SimCLR、SupCon)的一个关键点。定义方式:指示矩阵
- H800能效架构实战解析
智能计算研究中心
其他
内容概要H800能效架构以异构计算资源调度与动态功耗控制为核心,通过系统级协同设计实现算力密度与能耗优化的双重目标。其核心技术覆盖智能负载分配、电压频率动态调节及热管理三大模块,形成从芯片级到数据中心级的垂直优化链路。在架构设计中,异构资源调度算法通过实时分析任务特征与硬件状态,动态分配CPU、GPU及专用加速器资源,最大化硬件利用率;动态功耗模块则基于负载波动自适应调整供电策略,结合多级电压频率
- 模型优化驱动产业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术的迭代正沿着多维路径快速演进,其核心驱动力在于突破算法性能与产业需求间的适配瓶颈。以自适应学习机制与迁移学习框架为基础的优化策略,显著提升了模型在跨场景应用中的泛化能力,而超参数自动调优技术则通过PyTorch、TensorFlow等主流框架的接口标准化,降低了复杂模型的开发门槛。在部署层面,边缘计算与联邦学习的协同应用不仅缩短了金融预测、医疗影像分析等场景的响应延迟,更通
- 从指令集鸿沟到硬件抽象:AI 如何重塑手机与电脑编程语言差异——PanLang 原型全栈设计方案与实验性探索1
灏瀚星空
PanLang原型全栈设计方案与实验性探索人工智能智能手机开发语言架构机器学习语言模型模板方法模式
AI如何跨越指令集鸿沟?手机与电脑编程语言差异溯源与统一路径——PanLang原型全栈设计方案与实验性探索1文章目录AI如何跨越指令集鸿沟?手机与电脑编程语言差异溯源与统一路径——PanLang原型全栈设计方案与实验性探索1前言一、手机与电脑编程语言的核心差异二、实现语言统一的技术路径1.硬件抽象层设计(HAL2.0)2.自适应运行时系统3.跨平台UI引擎三、新型统一语言设计要素1.核心特性2.编
- 计算机视觉总结
Trank-Lw
计算机视觉深度学习人工智能
以下是针对上述问题的详细解答,并结合代码示例进行说明:1.改进YOLOv5人脸检测模块,复杂光照场景准确率从98.2%提升至99.5%优化具体过程:光照补偿:在数据预处理阶段,采用自适应光照补偿算法,对图像进行实时增强,以减少光照变化对人脸检测的影响。数据增强:在训练数据中增加复杂光照场景下的样本,如强光、弱光、背光等,通过数据增强提高模型对不同光照条件的适应性。模型调整:对YOLOv5模型的网络
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 【块浮点(BFP)技术:原理、设计及应用】
youngerwang
移动5G测试验证之禅道matlab信息与通信基带工程
文章目录块浮点(BFP)技术:原理、设计及应用摘要关键词:块浮点(BFP)技术;量化;数据压缩;自适应调整;联合编码;硬件实现;Matlab一、引言二、BFP原理(一)基本概念(二)量化过程(三)逆过程(解量化)三、BFP设计(一)块大小选择(二)缩放因子编码(三)量化比特宽度选择四、BFP设计难点解析(一)数据动态特性与块大小适配(二)缩放因子编码的复杂度与效率平衡(三)量化精度与压缩比的最优平
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- 重塑家用机器人大脑!云鲸旗舰机型逍遥002搭载旭日5正式开售
量子位
2025年3月20日,全球家庭清洁机器人明星品牌云鲸智能携最新一代旗舰机型——云鲸逍遥002,亮相中国家电及消费电子博览会(AWE)。该产品以”AI智能深度清洁“为核心,基于地瓜机器人全新一代旭日5智能计算芯片,推出首创的双目AI视觉感知自适应系统,以10TOPs的端侧算力与180万点/秒的3D稠密深度点云生成能力,为家庭场景带来毫米级障碍测距精度与语义级环境理解,是家庭清洁机器人智能化演进的又一
- H5 毛玻璃个人简约引导页源码
caslncas
源码html5
源码名称:毛玻璃个人简约引导页源码源码介绍:一款毛玻璃引导页源码,可以大量添加旗下站点和友情链接。手机端、电脑端背景自适应。需求环境:H5下载地址:https://www.changyouzuhao.cn/11921.html
- CSS的滑动门技术
xiao____ming
html5css3
在制作导航栏等网页元素时,常常需要为其设置特殊形状的背景,为了使各种特殊形状的背景能够自适应元素中文本的多少,即实现自由拉伸滑动,就出现了CSS滑动门技术。微信的导航栏:滑动门简单使用:Documenta{display:inline-block;height:33px;line-height:33px;background:url(to.png)no-repeat;margin:100px;pa
- css+html应用实例1:滑动门技术的简单实现
weixin_30639719
关于滑动门,现在的页面中好多地方都会用到滑动门,一般用作于导航背景,它的官方解释如下:滑动门:根据文本自适应大小,根据背景的层叠性制作,并允许他们在彼此之上进行滑动,以创造出一些特殊的效果。为什么很多人喜欢用滑动门呢,因为有些时候导航的字体长度不一致,长长短短实在不好弄背景图片之类啥的,如果单独根据不同的长度调用不同的背景图片太麻烦不说服务器压力也太大,所以滑动门技术应运而生,它可以根据元素本身的
- 自动驾驶中间件技术辨析:ROS、Apex.Grace、DDS、AutoSAR和AutoSAR Adaptive
赛卡
自动驾驶中间件人工智能
在自动驾驶技术的演进中,中间件作为连接硬件、操作系统与应用软件的核心枢纽,其安全性、实时性和可扩展性至关重要。当前市场上主流的中间件技术包括ROS/ROS2、Apex.Grace(Apex.OS)、DDS、AutoSAR(经典平台CP)和AutoSARAdaptive(自适应平台AP)。这些技术各有特点,但也存在交叉与互补。本文将从功能定位、技术架构、安全认证和应用场景等方面,深入分析它们的联系与
- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- 【CSS】实现三栏布局的方式
儒rs
CSScsscss3html三栏布局前端
【CSS】实现三栏布局的方式三栏布局一般指的是页面中一共有三栏,左右两栏宽度固定,中间自适应的布局,三栏布局的具体实现如下:①利用浮动利用浮动,左右两栏设置固定大小,并设置对应方向的浮动。中间一栏设置左右两个方向的margin值。注意这种方式,中间一栏必须放到最后。.container{overflow:hidden;}.left{float:left;width:100px;background
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- 仿新浪微博typecho主题源码
酷爱码
phpPHPtypecho博客源码
源码介绍仿新浪微博typecho主题源码,简约美观,适合做个人博客,该源码为主题模板,需要先搭建typecho,然后吧源码放到对应的模板目录下,后台启用即可源码特点支持自适应个性化程度高可设置背景图、顶栏背景图可自定义导航栏、资料卡、关注按钮等文章大图多样化选择,支持随机图适配Typecho最新版本(1.2.1)与PHP8.0源码免费获取仿新浪微博typecho主题源码
- MySQL 8.0 特性的高频面试题及核心知识点
dblens 数据库管理和开发工具
mysqlmysql数据库面试题
1.索引原理与MySQL8.0新特性答案:自适应哈希索引:MySQL8.0自动在频繁查询的索引上构建哈希索引,加速等值查询(如WHEREid=1)。全文索引优化:支持布尔模式(MATCH()AGAINST())和自然语言模式,且索引更新更高效。InnoDB页压缩:支持ZSTD压缩算法,减少存储空间和I/O开销。虚拟列索引:可对虚拟列(ComputedColumns)创建索引,减少存储冗余。2.事务
- vue2实现表格拖拽功能。整列的数据可以随意拖拽排序,但是行的拖拽只影响当前列
火炬冬天
vue.jsjavascriptelementui
概述本文介绍基于Vue2实现的表格组件,支持以下核心功能:列拖拽排序(整列位置交换)行拖拽排序(每列内部独立排序)自适应列宽与内容溢出提示可视化拖拽反馈效果数据与视图的自动同步功能演示源码分享{{column.label}}-->⠿{{data[rowIndex][column.prop]}}importdraggablefrom'vuedraggable';exportdefault{compo
- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 问题链的拓扑学重构
由数入道
AI辅助教学拓扑学重构
问题链拓扑学重构目录概念框架与理论基础综合知识图谱(Mermaid图示)核心构成要素与参数解析逻辑链条方法论详解与数学模型4.1根源溯源——分形式5Whys与RCA4.2网络建模——系统动力学与贝叶斯网络4.3维度跃迁——第一性原理与跨模态映射4.4时空折叠——历史回溯与未来推演四维操控模型——知识精髓工具、案例及实践方法注意事项、终止机制与系统自适应未来拓展与研究方向总结与战略价值1.概念框架与
- Cisco ASA 9.23.1 - 思科自适应安全设备 (ASA) 软件
cisco
CiscoASA9.23.1-思科自适应安全设备(ASA)软件CiscoAdaptiveSecurityAppliance(ASA)请访问原文链接:https://sysin.org/blog/cisco-asa/查看最新版。原创作品,转载请保留出处。作者主页:sysin.org思科自适应安全设备(ASA)软件成熟的防火墙和网络安全平台CiscoASA系列安全设备可以保护各种规模的公司网络。它可让
- DeepSeek在智慧物流管控中的全场景落地方案
猴的哥儿
笔记大数据交通物流python数据仓库微服务
一、智慧物流核心痛点与DeepSeek解决方案矩阵物流环节行业痛点DeepSeek技术方案价值增益仓储管理库存预测误差率>30%多模态时空预测模型库存周转率↑40%运输调度车辆空驶率35%强化学习动态调度引擎运输成本↓25%路径规划突发路况响应延迟>30分钟实时路况语义理解+自适应规划准时交付率↑18%异常检测50%异常依赖人工发现多传感器融合的异常模式识别异常发现时效↑6倍客户服务50%咨询需人
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- CSS 自适应图片根据 div 大小进行均匀填充
前端小助手
csstensorflow前端
目录前言使用object-fit属性示例代码HTMLCSS总结相关阅读1.前言在Web开发中,经常需要图片根据其容器的大小进行自适应填充,使得图片在任何设备和屏幕尺寸下都能保持良好的显示效果。本文将介绍如何使用CSS中的object-fit属性来实现这一需求。2.使用object-fit属性object-fit是一个CSS属性,专门用于控制替换元素(如、等)在其容器内的显示方式。常用的值有:fil
- Adaptive AUTOSAR之状态管理模块(STM)
weixin_42130902
AdaptiveAUTOSAR架构
1.STM简介状态管理(STM)负责根据从其他AUTOSAR自适应平台应用程序或自适应应用程序接收的信息确定其任何内部状态机的状态。STM使用提供的网络管理字段(NetworkHandle)控制(部分网络)的状态。STM与执行管理(EXM)交互,以请求功能组和机器状态,以输入由项目需求确定的特定状态。功能组状态可能还依赖于网络管理(NM)状态。STM通过ara::com服务提供对其内部状态的访问。
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。