近期,项目需要,学习使用eigen矩阵库,链接时eigen的主页,发现相关中文资料比较少,今天写下使用心得~
eigen的配置很简单,下载解压后,在VC++目录下的包含目录中,将eigen的路径包含进去,就可以使用了。
Matrix
中,Scalar表示数据类型,RowsAtCompileTime和ColsAtCompileTime分别表示编译时的行数和列数。Vector3d
定义为 Matrix
VectorXd
定义为Matrix
。eigen的数据结构类型主要有:Matrix,Vector;其中大小又分为固定和动态两类,初始化方法如下:
Matrix A; // 固定大小的双精度矩阵,double,float,int为数据类型,也可表示为Matrix3d。
Matrix B; // 固定行数,列数为动态
Matrix C; // 行数和列数都是动态大小,和MatrixXd一样
Matrix E; // 行优先的矩阵(默认是列优先)
Matrix3f P, Q, R; // 3x3 的浮点型矩阵
Vector3f x, y, z; // 3x1 的浮点型矩阵(列向量)
RowVector3f a, b, c; // 1x3 的浮点型矩阵(行向量)
VectorXd v; // 动态大小的双精度列向量
上面,Xd中X表示动态大小,#include
包含所有普通矩阵函数,不包括稀疏矩阵函数。A赋值时可以是:
A<<1,2,5,
3,5,6.0,
5.5,6,7;
矩阵元素的访问:Eigen中矩阵、数组、向量的下标都是从0开始。矩阵元素的访问可以通过”()”操作符完成。例如m(2, 3)既是获取矩阵m的第2行第3列元素。
向量还可以使用”[]”操作符,注意矩阵不可用。实例1:
#include
#include
using namespace std;
using namespace Eigen;
void main()
{
MatrixXd m(2, 2);
m(0, 0) = 3;
m(1, 0) = 2.5;
m(0, 1) = -1;
m(1, 1) = m(1, 0) + m(0, 1);
std::cout << "Here is the matrix m:\n" << m << std::endl;
VectorXd v(2);
v(0) = 4;
v(1) = v(0) - 1;
std::cout << "Here is the vector v:\n" << v << std::endl;
return;
}
矩阵的大小查询方法有: rows(), cols() and size(),分别表示矩阵的行数、列数和元素总数。可以通过 resize()方法改变动态矩阵的大小。
注意:(1)、固定大小的矩阵是不能使用resize()来修改矩阵的大小;(2)、resize()函数会析构掉原来的数据,因此调用resize()函数之后将不能保证元素的值不改变;(3)、使用”=”操作符操作动态矩阵时,如果左右两边的矩阵大小不等,则左边的动态矩阵的大小会被修改为右边的大小。
#include
#include
using namespace Eigen;
int main()
{
MatrixXd m(2,5);
m.resize(4,3);
std::cout << "The matrix m is of size "
<< m.rows() << "x" << m.cols() << std::endl;
std::cout << "It has " << m.size() << " coefficients" << std::endl;
VectorXd v(2);
v.resize(5);
std::cout << "The vector v is of size " << v.size() << std::endl;
std::cout << "As a matrix, v is of size "
<< v.rows() << "x" << v.cols() << std::endl;
}
Eigen defines the following Matrix typedefs:
Where:
2
, 3
, 4
, or X
(meaning Dynamic
).i
(meaning int), f
(meaning float), d
(meaning double), cf
(meaning complexcd
(meaning complex#include
#include
#include
#include
using namespace std;
using namespace cv;
using namespace Eigen;
void main()
{
Mat img = imread("jasen.jpg",CV_LOAD_IMAGE_GRAYSCALE);
int row = img.rows;
int col = img.cols;
MatrixXd m(row, col);
cv2eigen(img,m);
return;
}
实例4:
#include
#include
#include
#include
using namespace std;
using namespace cv;
using namespace Eigen;
void main()
{
Mat img;
Matrix m ;
m.fill(255);
eigen2cv(m, img);
return;
}
#include
// 基本用法
// Eigen // Matlab // 注释
x.size() // length(x) // 向量的长度
C.rows() // size(C,1) // 矩阵的行数
C.cols() // size(C,2) // 矩阵的列数
x(i) // x(i+1) // 访问向量元素(Matlab的下标从1开始计数)
C(i,j) // C(i+1,j+1) // 访问矩阵元素
A << 1, 2, 3, // 初始化A,元素也可以是矩阵,先按列堆叠,再按行堆叠。
4, 5, 6,
7, 8, 9;
B << A, A, A; // B 是3个A水平排列
A.fill(10); // 将A的所有元素填充为10
// Eigen // Matlab 注释
MatrixXd::Identity(rows,cols) // eye(rows,cols) //单位矩阵
C.setIdentity(rows,cols) // C = eye(rows,cols) //单位矩阵
MatrixXd::Zero(rows,cols) // zeros(rows,cols) //全零矩阵
C.setZero(rows,cols) // C = zeros(rows,cols) //全零矩阵
MatrixXd::Ones(rows,cols) // ones(rows,cols) //全一矩阵
C.setOnes(rows,cols) // C = ones(rows,cols) //全一矩阵
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 //MatrixXd::Random 返回范围为(-1, 1)的均匀分布的随机数
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1 //返回范围为(-1, 1)的均匀分布的随机数
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)' //返回size个等差数列,第一个数为low,最后一个数为high
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)' //返回size个等差数列,第一个数为low,最后一个数为high
VectorXi::LinSpaced(((hi-low)/step)+1, // low:step:hi //以step为步长的等差数列。((hi-low)/step)+1为个数
low,low+step*(size-1)) //
// Matrix 切片和块。下面列出的所有表达式都是可读/写的。
// 使用模板参数更快(如第2个)。注意:Matlab是的下标是从1开始的。
// Eigen // Matlab // 注释
x.head(n) // x(1:n) //前n个元素
x.head() // x(1:n) //前n个元素
x.tail(n) // x(end - n + 1: end) //倒数n个元素
x.tail() // x(end - n + 1: end) //倒数n个元素
x.segment(i, n) // x(i+1 : i+n) //切片
x.segment(i) // x(i+1 : i+n) //切片
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols) //块
P.block(i, j) // P(i+1 : i+rows, j+1 : j+cols) //块
P.row(i) // P(i+1, :) //第i行
P.col(j) // P(:, j+1) //第j列
P.leftCols() // P(:, 1:cols) //前cols列
P.leftCols(cols) // P(:, 1:cols) //前cols列
P.middleCols(j) // P(:, j+1:j+cols) //中间cols列
P.middleCols(j, cols) // P(:, j+1:j+cols) //中间cols列
P.rightCols() // P(:, end-cols+1:end) //后cols列
P.rightCols(cols) // P(:, end-cols+1:end) //后cols列
P.topRows() // P(1:rows, :) //前rows行
P.topRows(rows) // P(1:rows, :) //前rows行
P.middleRows(i) // P(i+1:i+rows, :) //中间rows行
P.middleRows(i, rows) // P(i+1:i+rows, :) //中间rows行
P.bottomRows() // P(end-rows+1:end, :) //最后rows行
P.bottomRows(rows) // P(end-rows+1:end, :) //最后rows行
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols) //左上角块
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end) //右上角块
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols) //左下角块
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end) //右下角块
P.topLeftCorner() // P(1:rows, 1:cols) //左上角块
P.topRightCorner() // P(1:rows, end-cols+1:end) //右上角块
P.bottomLeftCorner() // P(end-rows+1:end, 1:cols) //左下角块
P.bottomRightCorner() // P(end-rows+1:end, end-cols+1:end) //右下角块
// 特别说明:Eigen的交换函数进行了高度优化
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) //交换列
// Views, transpose, etc;
// Eigen // Matlab
R.adjoint() // R' // 共轭转置
R.transpose() // R.' or conj(R') // 可读/写 转置
R.diagonal() // diag(R) // 可读/写 对角元素
x.asDiagonal() // diag(x) // 对角矩阵化
R.transpose().colwise().reverse() // rot90(R) // 可读/写 逆时针旋转90度
R.rowwise().reverse() // fliplr(R) // 水平翻转
R.colwise().reverse() // flipud(R) // 垂直翻转
R.replicate(i,j) // repmat(P,i,j) // 复制矩阵,垂直复制i个,水平复制j个
// 四则运算,和Matlab相同。但Matlab中不能使用*=这样的赋值运算符
// 矩阵 - 向量 矩阵 - 矩阵 矩阵 - 标量
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
// 逐像素操作Vectorized operations on each element independently
// Eigen // Matlab //注释
R = P.cwiseProduct(Q); // R = P .* Q //逐元素乘法
R = P.array() * s.array(); // R = P .* s //逐元素乘法(s为标量)
R = P.cwiseQuotient(Q); // R = P ./ Q //逐元素除法
R = P.array() / Q.array(); // R = P ./ Q //逐元素除法
R = P.array() + s.array(); // R = P + s //逐元素加法(s为标量)
R = P.array() - s.array(); // R = P - s //逐元素减法(s为标量)
R.array() += s; // R = R + s //逐元素加法(s为标量)
R.array() -= s; // R = R - s //逐元素减法(s为标量)
R.array() < Q.array(); // R < Q //逐元素比较运算
R.array() <= Q.array(); // R <= Q //逐元素比较运算
R.cwiseInverse(); // 1 ./ P //逐元素取倒数
R.array().inverse(); // 1 ./ P //逐元素取倒数
R.array().sin() // sin(P) //逐元素计算正弦函数
R.array().cos() // cos(P) //逐元素计算余弦函数
R.array().pow(s) // P .^ s //逐元素计算幂函数
R.array().square() // P .^ 2 //逐元素计算平方
R.array().cube() // P .^ 3 //逐元素计算立方
R.cwiseSqrt() // sqrt(P) //逐元素计算平方根
R.array().sqrt() // sqrt(P) //逐元素计算平方根
R.array().exp() // exp(P) //逐元素计算指数函数
R.array().log() // log(P) //逐元素计算对数函数
R.cwiseMax(P) // max(R, P) //逐元素计算R和P的最大值
R.array().max(P.array()) // max(R, P) //逐元素计算R和P的最大值
R.cwiseMin(P) // min(R, P) //逐元素计算R和P的最小值
R.array().min(P.array()) // min(R, P) //逐元素计算R和P的最小值
R.cwiseAbs() // abs(P) //逐元素计算R和P的绝对值
R.array().abs() // abs(P) //逐元素计算绝对值
R.cwiseAbs2() // abs(P.^2) //逐元素计算平方
R.array().abs2() // abs(P.^2) //逐元素计算平方
(R.array() < s).select(P,Q ); // (R < s ? P : Q) //根据R的元素值是否小于s,选择P和Q的对应元素
R = (Q.array()==0).select(P,A) // R(Q==0) = P(Q==0) R(Q!=0) = P(Q!=0) //根据Q中元素等于零的位置选择P中元素
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // 对P中的每个元素应用func函数
// Reductions.
int r, c;
// Eigen // Matlab //注释
R.minCoeff() // min(R(:)) //最小值
R.maxCoeff() // max(R(:)) //最大值
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); //计算最小值和它的位置
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); //计算最大值和它的位置
R.sum() // sum(R(:)) //求和(所有元素)
R.colwise().sum() // sum(R) //按列求和
R.rowwise().sum() // sum(R, 2) or sum(R')' //按行求和
R.prod() // prod(R(:)) //累积
R.colwise().prod() // prod(R) //按列累积
R.rowwise().prod() // prod(R, 2) or prod(R')' //按行累积
R.trace() // trace(R) //迹
R.all() // all(R(:)) //是否所有元素都非零
R.colwise().all() // all(R) //按列判断,是否该列所有元素都非零
R.rowwise().all() // all(R, 2) //按行判断,是否该行所有元素都非零
R.any() // any(R(:)) //是否有元素非零
R.colwise().any() // any(R) //按列判断,是否该列有元素都非零
R.rowwise().any() // any(R, 2) //按行判断,是否该行有元素都非零
// 点积,范数等
// Eigen // Matlab // 注释
x.norm() // norm(x). //范数(注意:Eigen中没有norm(R))
x.squaredNorm() // dot(x, x) //平方和(注意:对于复数而言,不等价)
x.dot(y) // dot(x, y) //点积
x.cross(y) // cross(x, y) //交叉积,需要头文件 #include
类型转换
// Eigen // Matlab // 注释
A.cast(); // double(A) //变成双精度类型
A.cast(); // single(A) //变成单精度类型
A.cast(); // int32(A) //编程整型
A.real(); // real(A) //实部
A.imag(); // imag(A) //虚部
// 如果变换前后的类型相同,不做任何事情。
// 注意:Eigen中,绝大多数的涉及多个操作数的运算都要求操作数具有相同的类型
MatrixXf F = MatrixXf::Zero(3,3);
A += F; // 非法。Matlab中允许。(单精度+双精度)
A += F.cast(); // 将F转换成double,并累加。(一般都是在使用时临时转换)
// Eigen 可以将已存储数据的缓存 映射成 Eigen矩阵
float array[3];
Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data); // 将 data 复制到 mat2x2
Matrix2i::Map(data) = 2*mat2x2; // 使用 2*mat2x2 覆写data的元素
MatrixXi::Map(data, 2, 2) += mat2x2; // 将 mat2x2 加到 data的元素上 (当编译时不知道大小时,可选语法)
参考:
http://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
http://blog.csdn.net/xuezhisdc/article/details/54645238
http://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html
http://blog.csdn.net/column/details/14470.html
https://www.cnblogs.com/goudanli/p/8259590.html
https://stackoverflow.com/questions/32605838/error-eigen-library-on-linux