ClickHouse Query执行流程浅析

语法树生成及执行涉及的UML图

ClickHouse Query执行流程浅析_第1张图片

HTTP Handler 接收Query请求
调用
Interpreters::executeQuery.h::executeQuery(…)
调用
Interpreters::executeQuery.h::executeQueryImpl(…)
生成
ASTPtr ast = Parsers::ParserQuery::parseImpl(…)

using ASTPtr = std::shared_ptr
IAST是所有SQL语句解析后,生成的抽象语法树的公共接口,例如可以生成一个ASTSelectWithUnionQuery类型的语法树。

生成
auto interpreter = InterpreterFactory::get(ast, context, stage);

封装ASTPtr为IInterpreter,例如Query语句会封装成一个InterpreterSelectQuery类的对象,在生成此对象的实例时,也会对这个AST做一些简单的分析和优化,例如PREWHERE和WHERE的调整、输入数据的类型推断等。

BlockIO res = interpreter->execute();

BlockIO封装了当前QueryPipeline实例,以及相应的输入、输出流的指针,方便根据Pipeline中的每一个IProcessor实例的状态,触发流的读写以及注册流上的事件,比如Query工作流完成事件。

BlockIO InterpreterSelectQuery::execute()
{
    BlockIO res;
    QueryPlan query_plan;

    buildQueryPlan(query_plan);

    res.pipeline = std::move(*query_plan.buildQueryPipeline());
    return res;
}

聚合函数读取数据及执行过程

以uniq(…)方法为例,简单讲述聚合函数执行add(…)方法的过程:
Aggregator::executeOnBlock(…)
调用
Aggregator::executeWithoutKeyImpl(…)
调用
AggregateFunctionInstruction::IAggregateFunction::addBatchSinglePlace(…)
调用
IAggregateFunction::addBatchSinglePlace(…)
调用具体子类的
AggregateFunctionUniq::add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena * arena)

这个方法可以用来聚合所有的数据,
对于聚合操作,在解析计划树时,会向Pipeline中添加一个MergingAggregatedStep,用于将所有处理后的数据聚合成一个Block。

如果所有的Blocks都在自己的数据集上聚合完成,MergingAggregatedStep中选择使用不同的Transformer来完成所有已经聚合了的Block间的聚合操作,例如如果在内存充足的情况下,可以基于内存作排序,最终返回排序且聚合的一个Block;如果不足则使用Merge-sort过程,通过溢出文件的试完成聚合。

Select Query语句的Parse过程

从SELECT语句到AST Node的过程,使用Parser*前缀的类完成。

假设有一个如下的QUERY语句:

SELECT a FROM testdb.test_tbl WHERE dt='20210501'

TCPHandler类

以TCP传输模式接收客户端的消息,这里指处理SQL语句的Server端类,它的核心方法如下:

void TCPHandler::runImpl() {
// 配置Socket

// 检查消息体

// Authenticaiton查检及配置

    Settings connection_settings = connection_context.getSettings();

    sendHello();

    connection_context.setProgressCallback([this] (const Progress & value) { return this->updateProgress(value); });

    while (true)
    {
        /// We are waiting for a packet from the client. Thus, every `poll_interval` seconds check whether we need to shut down.
        {
            Stopwatch idle_time;
            while (!server.isCancelled() && !static_cast(*in).poll(
                std::min(connection_settings.poll_interval, connection_settings.idle_connection_timeout) * 1000000))
            {
                if (idle_time.elapsedSeconds() > connection_settings.idle_connection_timeout)
                {
                    LOG_TRACE(log, "Closing idle connection");
                    return;
                }
            }
        }

        /// If we need to shut down, or client disconnects.
        if (server.isCancelled() || in->eof())
            break;

        /// Set context of request.
        query_context = connection_context;

        Stopwatch watch;
        state.reset();

        /// Initialized later.
        std::optional query_scope;

        /** An exception during the execution of request (it must be sent over the network to the client).
         *  The client will be able to accept it, if it did not happen while sending another packet and the client has not disconnected yet.
         */
        std::optional exception;
        bool network_error = false;

        bool send_exception_with_stack_trace = true;

        try
        {
            /// If a user passed query-local timeouts, reset socket to initial state at the end of the query
            SCOPE_EXIT({state.timeout_setter.reset();});

            /** If Query - process it. If Ping or Cancel - go back to the beginning.
             *  There may come settings for a separate query that modify `query_context`.
             */
            if (!receivePacket())
                continue;

            query_scope.emplace(*query_context);

            send_exception_with_stack_trace = query_context->getSettingsRef().calculate_text_stack_trace;

            /// Should we send internal logs to client?
            const auto client_logs_level = query_context->getSettingsRef().send_logs_level;
            
            /// 配置query执行时的上下文环境,例如setExternalTablesInitializer,setInputInitializer等
            ...

            customizeContext(*query_context);

            bool may_have_embedded_data = client_tcp_protocol_version >= DBMS_MIN_REVISION_WITH_CLIENT_SUPPORT_EMBEDDED_DATA;
            /// 开始执行Query语句,从解析到后生成物理计划树
            state.io = executeQuery(state.query, *query_context, false, state.stage, may_have_embedded_data);
			// 开始监听过程
            after_check_cancelled.restart();
            after_send_progress.restart();

            if (state.io.out)
            {
                state.need_receive_data_for_insert = true;
                processInsertQuery(connection_settings);
            }
            else if (state.need_receive_data_for_input) // It implies pipeline execution
            {
            	// 在这里调用executeQuery返回的结果,触发Pipeline的执行,可以看到
                /// It is special case for input(), all works for reading data from client will be done in callbacks.
                auto executor = state.io.pipeline.execute();
                executor->execute(state.io.pipeline.getNumThreads());
            }
            else if (state.io.pipeline.initialized())
                processOrdinaryQueryWithProcessors();
            else if (state.io.in)
                processOrdinaryQuery();
			// 执行完成后的收尾工作
            state.io.onFinish();

            /// Do it before sending end of stream, to have a chance to show log message in client.
            query_scope->logPeakMemoryUsage();

            if (state.is_connection_closed)
                break;

            sendLogs();
            sendEndOfStream();

            /// QueryState should be cleared before QueryScope, since otherwise
            /// the MemoryTracker will be wrong for possible deallocations.
            /// (i.e. deallocations from the Aggregator with two-level aggregation)
            state.reset();
            query_scope.reset();
        }
        catch (const Exception & e)
        { ... /// 处理各种异常 }
        catch (...)
        {
            state.io.onException();
            exception.emplace("Unknown exception", ErrorCodes::UNKNOWN_EXCEPTION);
        }
		/// 处理QUERY执行后的收尾工作,例如发送日志和清理各种执行时的环境信息
		... 

        watch.stop();

        LOG_DEBUG(log, "Processed in {} sec.", watch.elapsedSeconds());

        /// It is important to destroy query context here. We do not want it to live arbitrarily longer than the query.
        query_context.reset();

        if (network_error)
            break;
    }

}

上面的方法中executeQuery(...)是query语句的入口,它的实现类在executeQuery.cpp文件中。

QueryProcessingStage

Query语句执行的阶段,它定义在QueryProcessingStage.h文件中,如下:

/// Up to what stage the SELECT query is executed or needs to be executed.
namespace QueryProcessingStage
{
    /// Numbers matter - the later stage has a larger number.
    ///
    /// It is part of Protocol ABI, add values only to the end.
    /// Also keep in mind that the code may depends on the order of fields, so be double aware when you will add new values.
    enum Enum
    {
        /// Only read/have been read the columns specified in the query.
        FetchColumns       = 0,
        /// Until the stage where the results of processing on different servers can be combined.
        WithMergeableState = 1,
        /// Completely.
        Complete           = 2,
        /// Until the stage where the aggregate functions were calculated and finalized.
        ///
        /// It is used for auto distributed_group_by_no_merge optimization for distributed engine.
        /// (See comments in StorageDistributed).
        WithMergeableStateAfterAggregation = 3,

        MAX = 4,
    };
}

executeQuery.cpp

下面的方法是在TCPHandler.cpp文件中的runImp()方法中调用的,用来执行一条query语句。

BlockIO executeQuery(
    // query语句字符串,例如select语句、insert语句、create语句等
    const String & query,
    // 上下文管理器,是从TCPHandler方法中connection_context中得到的,里面存放了各种在Query运行时可配置的参数信息
    Context & context,
    bool internal,
    // query语句的执行状态
    QueryProcessingStage::Enum stage,
    // 如果是Insert语句的话,待插入的数据是跟在Insert语句之后的,如果没有话,就不是一条insert语句
    bool may_have_embedded_data)
{
    ASTPtr ast;
    BlockIO streams;
    std::tie(ast, streams) = executeQueryImpl(query.data(), query.data() + query.size(), context,
        internal, stage, !may_have_embedded_data, nullptr);

    if (const auto * ast_query_with_output = dynamic_cast(ast.get()))
    {
        String format_name = ast_query_with_output->format
                ? getIdentifierName(ast_query_with_output->format)
                : context.getDefaultFormat();

        if (format_name == "Null")
            streams.null_format = true;
    }

    return streams;
}

executeQuery(…)方法又是调用如下方法完成工作的:

static std::tuple executeQueryImpl(
    const char * begin,
    const char * end,
    Context & context,
    bool internal,
    QueryProcessingStage::Enum stage,
    bool has_query_tail,
    ReadBuffer * istr)
{
    const auto current_time = std::chrono::system_clock::now();

    /// If we already executing query and it requires to execute internal query, than
    /// don't replace thread context with given (it can be temporary). Otherwise, attach context to thread.
    if (!internal)
    {
        context.makeQueryContext();
        CurrentThread::attachQueryContext(context);
    }

    const Settings & settings = context.getSettingsRef();
    /// 实例化一个ParserQuery对象,用来解析SQL语句,并生成一棵AST树
    ParserQuery parser(end);
    ASTPtr ast;
    const char * query_end;

    /// Don't limit the size of internal queries.
    size_t max_query_size = 0;
    if (!internal)
        max_query_size = settings.max_query_size;

    try
    {
        /// TODO Parser should fail early when max_query_size limit is reached.
        ast = parseQuery(parser, begin, end, "", max_query_size, settings.max_parser_depth);

        /// Interpret SETTINGS clauses as early as possible (before invoking the corresponding interpreter),
        /// to allow settings to take effect.
        if (const auto * select_query = ast->as())
        {
            if (auto new_settings = select_query->settings())
                InterpreterSetQuery(new_settings, context).executeForCurrentContext();
        }
        else if (const auto * select_with_union_query = ast->as())
        {
            if (!select_with_union_query->list_of_selects->children.empty())
            {
                if (auto new_settings = select_with_union_query->list_of_selects->children.back()->as()->settings())
                    InterpreterSetQuery(new_settings, context).executeForCurrentContext();
            }
        }
        else if (const auto * query_with_output = dynamic_cast(ast.get()))
        {
            if (query_with_output->settings_ast)
                InterpreterSetQuery(query_with_output->settings_ast, context).executeForCurrentContext();
        }

        auto * insert_query = ast->as();

        if (insert_query && insert_query->settings_ast)
            InterpreterSetQuery(insert_query->settings_ast, context).executeForCurrentContext();

        if (insert_query && insert_query->data)
        {
            query_end = insert_query->data;
            insert_query->has_tail = has_query_tail;
        }
        else
        {
            query_end = end;
        }
    }
    catch (...)
    {
        /// Anyway log the query.
        String query = String(begin, begin + std::min(end - begin, static_cast(max_query_size)));

        auto query_for_logging = prepareQueryForLogging(query, context);
        logQuery(query_for_logging, context, internal);

        if (!internal)
        {
            onExceptionBeforeStart(query_for_logging, context, time_in_microseconds(current_time), ast);
        }

        throw;
    }

	/// 下面的代码是解析AST树,生成一棵物理计划树,实际上是QueryPipeline的实例对象,它是可执行的流水线,是一种嵌套的结构。
	/// QueryPipeline可以认为是对Pipe实例的封装,而Pipe是对数据集上的一组transform操作,这些Pipe单元都必然有相同的数据header。
	...

parseQuery.cpp

此文件中定义了一系的全局的公共方法,上面讲到的executeQuery.cpp文件中调用的parseQuery(...)方法,就是在这个文件中定义,而parseQuery(...)方法实际上又是调用一开始创建的ParserQuery实例的方法完成工作的。

ParserQuery.cpp

继承关系:class ParserQuery : public IParserBase : public IParser

从前面展示的代码可以看到,执行Query语句的第一步是对SQL字符串的解析,生成AST树,而parse过程的入口就是此文件中定义的parseImpl(...)方法,代码如下:

bool ParserQuery::parseImpl(Pos & pos, ASTPtr & node, Expected & expected)
{
    ParserQueryWithOutput query_with_output_p;
    ParserInsertQuery insert_p(end);
    ParserUseQuery use_p;
    ParserSetQuery set_p;
    ParserSystemQuery system_p;
    ParserCreateUserQuery create_user_p;
    ParserCreateRoleQuery create_role_p;
    ParserCreateQuotaQuery create_quota_p;
    ParserCreateRowPolicyQuery create_row_policy_p;
    ParserCreateSettingsProfileQuery create_settings_profile_p;
    ParserDropAccessEntityQuery drop_access_entity_p;
    ParserGrantQuery grant_p;
    ParserSetRoleQuery set_role_p;
    ParserExternalDDLQuery external_ddl_p;

    bool res = query_with_output_p.parse(pos, node, expected)
        || insert_p.parse(pos, node, expected)
        || use_p.parse(pos, node, expected)
        || set_role_p.parse(pos, node, expected)
        || set_p.parse(pos, node, expected)
        || system_p.parse(pos, node, expected)
        || create_user_p.parse(pos, node, expected)
        || create_role_p.parse(pos, node, expected)
        || create_quota_p.parse(pos, node, expected)
        || create_row_policy_p.parse(pos, node, expected)
        || create_settings_profile_p.parse(pos, node, expected)
        || drop_access_entity_p.parse(pos, node, expected)
        || grant_p.parse(pos, node, expected)
        || external_ddl_p.parse(pos, node, expected);

    return res;
}

从上面的代码可以看到,ClickHouse目前支持所有的Query句型,包括DML、DDL、DQL,而ParserQuery对象,负责逐个尝试解析,一旦遇到能够解析完成的句型,就返回成功,这种实现方式自然会有一定的性能损耗。

这里我们是以SELECT句型分析的,因此这里会在执行完ParserQueryWithOutput的解析后,返回成功。

ParserInsertQuery.cpp

ParserInsertQuery类是继承自IParserBase类的,因此调用ParserInsertQuery::parse(...)方法,最终会调用parseImpl(...)方法完成工作代码如下:

bool ParserQueryWithOutput::parseImpl(Pos & pos, ASTPtr & node, Expected & expected)
{
    ParserShowTablesQuery show_tables_p;
    ParserSelectWithUnionQuery select_p;
    ParserTablePropertiesQuery table_p;
    ParserDescribeTableQuery describe_table_p;
    ParserShowProcesslistQuery show_processlist_p;
    ParserCreateQuery create_p;
    ParserAlterQuery alter_p;
    ParserRenameQuery rename_p;
    ParserDropQuery drop_p;
    ParserCheckQuery check_p;
    ParserOptimizeQuery optimize_p;
    ParserKillQueryQuery kill_query_p;
    ParserWatchQuery watch_p;
    ParserShowAccessQuery show_access_p;
    ParserShowAccessEntitiesQuery show_access_entities_p;
    ParserShowCreateAccessEntityQuery show_create_access_entity_p;
    ParserShowGrantsQuery show_grants_p;
    ParserShowPrivilegesQuery show_privileges_p;
    ParserExplainQuery explain_p;

    ASTPtr query;

    bool parsed =
           explain_p.parse(pos, query, expected)
        || select_p.parse(pos, query, expected)
        || show_create_access_entity_p.parse(pos, query, expected) /// should be before `show_tables_p`
        || show_tables_p.parse(pos, query, expected)
        || table_p.parse(pos, query, expected)
        || describe_table_p.parse(pos, query, expected)
        || show_processlist_p.parse(pos, query, expected)
        || create_p.parse(pos, query, expected)
        || alter_p.parse(pos, query, expected)
        || rename_p.parse(pos, query, expected)
        || drop_p.parse(pos, query, expected)
        || check_p.parse(pos, query, expected)
        || kill_query_p.parse(pos, query, expected)
        || optimize_p.parse(pos, query, expected)
        || watch_p.parse(pos, query, expected)
        || show_access_p.parse(pos, query, expected)
        || show_access_entities_p.parse(pos, query, expected)
        || show_grants_p.parse(pos, query, expected)
        || show_privileges_p.parse(pos, query, expected);

    if (!parsed)
        return false;
    ...
    /// 其它的收尾工作
}

从上面的代码可以看到,一条Query句型,又被细分为不同的语句,例如show、explain、select等,因此这里继续跟踪ParserSelectWithUnionQuery类分析。

ParserSelectWithUnionQuery.cpp

一条SELECT语句,又有两中不同的表示形式,即单句型和多句型,即存在UNION ALL关键字时,SELECT语句是多句型的,否则是单句型的。
UNION ALL的存在,表示这条件SQL语句可以解析为多条可以单独执行的QUERY语句,因此这里以ParserList对象保存可能存在的、并行语句,代码如下:

bool ParserSelectWithUnionQuery::parseImpl(Pos & pos, ASTPtr & node, Expected & expected)
{
    ASTPtr list_node;

    ParserList parser(std::make_unique(), std::make_unique("UNION ALL"), false);
    if (!parser.parse(pos, list_node, expected))
        return false;

    auto select_with_union_query = std::make_shared();

    node = select_with_union_query;
    select_with_union_query->list_of_selects = std::make_shared();
    select_with_union_query->children.push_back(select_with_union_query->list_of_selects);

    // flatten inner union query
    for (auto & child : list_node->children)
        getSelectsFromUnionListNode(child, select_with_union_query->list_of_selects->children);

    return true;
}

从上面可以看到,不论有没有UNION ALL关键字存在,一条SELECT语句的完整解析过程,又是交由ParserUnionQueryElement对象处理的。

ParserUnionQueryElement.cpp

这个类的解析方法,仅仅是创建一个新的ParserSelectQuery对象,然后返回它parse后的结果。

bool ParserUnionQueryElement::parseImpl(Pos & pos, ASTPtr & node, Expected & expected)
{
	/// ParserSubquery 尝试解析子句型,即由(和)包含的子句
	/// ParserSelectQuery 尝试解析SELECT语句
    if (!ParserSubquery().parse(pos, node, expected) && !ParserSelectQuery().parse(pos, node, expected))
        return false;

    if (const auto * ast_subquery = node->as())
        node = ast_subquery->children.at(0);

    return true;
}

ParserSelectQuery.cpp

终于到了一个具体的SELECT语句的解析过程,它的方法定义如下:

bool ParserSelectQuery::parseImpl(Pos & pos, ASTPtr & node, Expected & expected)
{
    auto select_query = std::make_shared();
    node = select_query;

    ParserKeyword s_select("SELECT");
    ParserKeyword s_distinct("DISTINCT");
    ParserKeyword s_from("FROM");
    ParserKeyword s_prewhere("PREWHERE");
    ParserKeyword s_where("WHERE");
    ParserKeyword s_group_by("GROUP BY");
    ParserKeyword s_with("WITH");
    ParserKeyword s_totals("TOTALS");
    ParserKeyword s_having("HAVING");
    ParserKeyword s_order_by("ORDER BY");
    ParserKeyword s_limit("LIMIT");
    ParserKeyword s_settings("SETTINGS");
    ParserKeyword s_by("BY");
    ParserKeyword s_rollup("ROLLUP");
    ParserKeyword s_cube("CUBE");
    ParserKeyword s_top("TOP");
    ParserKeyword s_with_ties("WITH TIES");
    ParserKeyword s_offset("OFFSET");
    ParserKeyword s_fetch("FETCH");
    ParserKeyword s_only("ONLY");
    ParserKeyword s_row("ROW");
    ParserKeyword s_rows("ROWS");
    ParserKeyword s_first("FIRST");
    ParserKeyword s_next("NEXT");

    ParserNotEmptyExpressionList exp_list(false);
    ParserNotEmptyExpressionList exp_list_for_with_clause(false);
    ParserNotEmptyExpressionList exp_list_for_select_clause(true);    /// Allows aliases without AS keyword.
    ParserExpressionWithOptionalAlias exp_elem(false);
    ParserOrderByExpressionList order_list;

    ParserToken open_bracket(TokenType::OpeningRoundBracket);
    ParserToken close_bracket(TokenType::ClosingRoundBracket);

    ASTPtr with_expression_list;
    ASTPtr select_expression_list;
    ASTPtr tables;
    ASTPtr prewhere_expression;
    ASTPtr where_expression;
    ASTPtr group_expression_list;
    ASTPtr having_expression;
    ASTPtr order_expression_list;
    ASTPtr limit_by_length;
    ASTPtr limit_by_offset;
    ASTPtr limit_by_expression_list;
    ASTPtr limit_offset;
    ASTPtr limit_length;
    ASTPtr top_length;
    ASTPtr settings;

    /// WITH expr list
    {
        if (s_with.ignore(pos, expected))
        {
            if (!ParserList(std::make_unique(), std::make_unique(TokenType::Comma))
                     .parse(pos, with_expression_list, expected))
                return false;
            if (with_expression_list->children.empty())
                return false;
        }
    }
    ...

从上面的代码可以看到,ClickHouse基本上支持了常见的SELECT语法,并且也实现了一些自定义的关键字。

Select Query语句的Interpret过程

executeQuery.cpp

前面我们知道这个文件中定义的executeQueryImpl(...)方法,会产生将一条SQL字符串,解析为一棵AST树,那接下来就是生成计划树的过程,即interpret的过程,代码如下:

static std::tuple executeQueryImpl(
    const char * begin,
    const char * end,
    Context & context,
    bool internal,
    QueryProcessingStage::Enum stage,
    bool has_query_tail,
    ReadBuffer * istr)
{
	/// 解析SQL字符串,生成AST
	...
	try
    {
	    auto interpreter = InterpreterFactory::get(ast, context, stage);

        std::shared_ptr quota;
        if (!interpreter->ignoreQuota())
        {
            quota = context.getQuota();
            if (quota)
            {
                quota->used(Quota::QUERIES, 1);
                quota->checkExceeded(Quota::ERRORS);
            }
        }

        StreamLocalLimits limits;
        if (!interpreter->ignoreLimits())
        {
            limits.mode = LimitsMode::LIMITS_CURRENT;
            limits.size_limits = SizeLimits(settings.max_result_rows, settings.max_result_bytes, settings.result_overflow_mode);
        }

        res = interpreter->execute();
        QueryPipeline & pipeline = res.pipeline;
        bool use_processors = pipeline.initialized();

        if (const auto * insert_interpreter = typeid_cast(&*interpreter))
        {
            /// Save insertion table (not table function). TODO: support remote() table function.
            auto table_id = insert_interpreter->getDatabaseTable();
            if (!table_id.empty())
                context.setInsertionTable(std::move(table_id));
        }
        ...
    }
    ...
}

从上面的代码可以看到,通过InterpreterFactory的工厂方法,根据解析生成的AST树的类型,创建对应的解释器,这里会创建一个InterpreterSelectQuery的对象,然后调用InterpreterSelectQuery::execute(..)方法。

InterpreterSelectQuery.cpp

InterpreterFactory::get(…)方法会返回一个InterpreterSelectQuery类的实例,同时这个类在创建时,就会对整个AST树进行遍历,完成树的检查、及基本的优化调整工作,例如语法异常、表达式错误、PREWHERE语句优化、JOIN优化等,更为具体的过程见其cpp文件中的构造方法。
完成InterpreterSelectQuery对象的创建后,这里就显示调用execute()方法,开始执行这棵树。实际这棵树是不能直接执行的,还需要两个过程,如下面代码:

BlockIO InterpreterSelectQuery::execute()
{
    BlockIO res;
    QueryPlan query_plan;
	// 产生生成一棵逻辑计划树
    buildQueryPlan(query_plan);
	// 生成一棵物理计划树,即流水线
    res.pipeline = std::move(*query_plan.buildQueryPipeline());
    return res;
}

buildQueryPlan(query_plan)方法,会根据解析和调整后的AST树,生成一棵逻辑树,即QueryPlan,实际上它是棵QueryPlanStep树,它们的介绍见最后的相关类小节
buildQueryPlan(...)方法,内部通过executeImpl(...)方法,将AST树中的结点,根据不同的操作类型,自顶向下搜集结点上的信息,并创建一个个的QueryPlanStep对象,添加进QueryPlan中,关键代码如下:

void InterpreterSelectQuery::executeImpl(QueryPlan & query_plan, const BlockInputStreamPtr & prepared_input, std::optional prepared_pipe)
{
    /** Streams of data. When the query is executed in parallel, we have several data streams.
     *  If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then
     *  if there is an ORDER BY, then glue the streams using ResizeProcessor, and then MergeSorting transforms,
     *  if not, then glue it using ResizeProcessor,
     *  then apply LIMIT.
     *  If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel;
     *  a parallel GROUP BY will glue streams into one,
     *  then perform the remaining operations with one resulting stream.
     */

    /// Now we will compose block streams that perform the necessary actions.
    auto & query = getSelectQuery();
    const Settings & settings = context->getSettingsRef();
    auto & expressions = analysis_result;
    auto & subqueries_for_sets = query_analyzer->getSubqueriesForSets();
    bool intermediate_stage = false;
    bool to_aggregation_stage = false;
    bool from_aggregation_stage = false;

    if (options.only_analyze)
    {
        auto read_nothing = std::make_unique(source_header);
        query_plan.addStep(std::move(read_nothing));

        if (expressions.prewhere_info)
        {
            auto prewhere_step = std::make_unique(
                    query_plan.getCurrentDataStream(),
                    expressions.prewhere_info->prewhere_actions,
                    expressions.prewhere_info->prewhere_column_name,
                    expressions.prewhere_info->remove_prewhere_column);

            prewhere_step->setStepDescription("PREWHERE");
            query_plan.addStep(std::move(prewhere_step));

            // To remove additional columns in dry run
            // For example, sample column which can be removed in this stage
            if (expressions.prewhere_info->remove_columns_actions)
            {
                auto remove_columns = std::make_unique(
                        query_plan.getCurrentDataStream(),
                        expressions.prewhere_info->remove_columns_actions);

                remove_columns->setStepDescription("Remove unnecessary columns after PREWHERE");
                query_plan.addStep(std::move(remove_columns));
            }
        }
    }
    /// 其它Step的构建过程
    ...
}

当完成整棵QueryPlan树的转换后,仅仅是生成了一个优化后的逻辑计划树,还需要将逻辑树转换成物理计划树,才能真正地开始执行,而这一步的工作是由QueryPlan::buildQueryPipeline()方法完成的。

QueryPlan.cpp

buildQueryPipeline()方法会将逻辑树中的一个个QueryPlanStep结点,自底向上,从左向右转换成IProcessor的实例对象,也就是物理计划树中的结点,将组织成QueryPipeline的结构。QueryPlan树的遍历过程如下:

// 逻辑计划树树的一层,Step关联结构,->表示左边先于右边执行,也表示左边的孩子是右边
// 一条不包含子句的逻辑树结构如下,一棵倒立的树,其中每一个step结点就是一层,所谓的流水线就是自顶向下的父子结构:
// prepared_source_step -> prewhere_step -> remove_columns ->
// row_level_security_step -> before_array_join_step ->
// array_join_step -> before_join_step -> join_step -> where_step ->
// aggregating_step -> partial_sorting -> merge_sorting_step ->
// merging_sorted -> merging_aggregated -> having_step ->
// expression_step -> distinct_step (root结点)
// 其中prepared_source_step可能是一个子句,subquery,如果有子句,则先执行子句。
// 因此可以上面的树可能的树结构为:
// subquery -> prepared_source_step
// Pipeline的拼接则是按照逻辑树自底向上构建,从root结点开始。
// Pipeline = initializePipeline -> FilterTransform -> ExpressionTransform -> ... -> DistinctTransform
// 因此Pipeline的执行顺序为从左到右。
QueryPipelinePtr QueryPlan::buildQueryPipeline()
{
    checkInitialized();
    optimize();
	// 一个Frame表示一个结点,及到这个结点已经生成的Pipeline对象
	// 这里会采用自底向上,从左到右的方式遍历逻辑计划树,也就意味着对于第N层的第I个结点,只有在遍
	// 完第N层的前N-1个结点后,才会遍历到当前结点同时,使用数组来保存
    struct Frame
    {
        Node * node;
        QueryPipelines pipelines = {};
    };

    QueryPipelinePtr last_pipeline;

    std::stack stack;
    stack.push(Frame{.node = root});

    while (!stack.empty())
    {
        auto & frame = stack.top();

        if (last_pipeline)
        {
        	// 如果一个Step结点和其孩子结点都遍历完成时,就将这个结点对应的Pipeline对象,
        	// 添加到当前层的Pipeline队列中,以便在一个流水线的上层算子,能够通过数组的长度,
        	// 来判断是不是已经处理完当前层的Step算子了。
            frame.pipelines.emplace_back(std::move(last_pipeline));
            last_pipeline = nullptr;
        }

        size_t next_child = frame.pipelines.size();
        if (next_child == frame.node->children.size())
        {
            bool limit_max_threads = frame.pipelines.empty();
            // 当前结点的所有的子结点都已经遍历完成了,也意味着当前结点的Pipelines构建完成,
            // 就将子结点生成的Pipelines绑定到当前Step结点上,这种绑定关系表示当前结点和其
            // 子结点会创建的所有IProcessor算子
            last_pipeline = frame.node->step->updatePipeline(std::move(frame.pipelines));
			// 从最后一个结点
            if (limit_max_threads && max_threads)
                last_pipeline->limitMaxThreads(max_threads);

            stack.pop();
        }
        else
        	/// 创建一个新的子结点的Pipelines结构
            stack.push(Frame{.node = frame.node->children[next_child]});
    }

    for (auto & context : interpreter_context)
        last_pipeline->addInterpreterContext(std::move(context));

    return last_pipeline;
}

下面举例说明,如何从一个QueryPlanStep转换到对应的IProcessor实例,从上面的代码可以看到这个过程应该是在updatePipeline(...)方法中完成,例如这里有过滤条件dt='20210501,那么它就对应一个FilterStep的实例,它的updatePipeline方法定义如下:

QueryPipelinePtr ITransformingStep::updatePipeline(QueryPipelines pipelines)
{
    if (collect_processors)
    {
    	// 收集Pipelines中的第一个Pipeline对象
        QueryPipelineProcessorsCollector collector(*pipelines.front(), this);
        // 将当前的ITransformingStep的实例类对应的IProcessor实例,添加到第一个Pipeline对象中
        transformPipeline(*pipelines.front());
        // detachProcessors()方法会将Pipleline中已经存入的IProcessor实例更新
        // 
        // 更新当前Step中有关联的IProcessor实例集合,方便
        processors = collector.detachProcessors();
    }
    else
        transformPipeline(*pipelines.front());

    return std::move(pipelines.front());
}

下面举例一个过滤算子从逻辑结点到物理结点的构建过程,代码如下:

void FilterStep::transformPipeline(QueryPipeline & pipeline)
{
    auto expression = std::make_shared(actions_dag);
    // 向输入的Pipeline对象中,添加一个过滤算子,即下面的lambda表达式返回的结果,
    // FilterTransform
    pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type)
    {
        bool on_totals = stream_type == QueryPipeline::StreamType::Totals;
        return std::make_shared(header, expression, filter_column_name, remove_filter_column, on_totals);
    });
	// 如果输入的Pipeline对象所包含的输入流,与当前的算子的输出结果拥有不同的schema信息,
	// 则必然是调用了某些表达式,将原来的字段类型,转换成了另外一个类型,因此
	// 再向Pipeline对象中追加一个ExpressionTransform操作,用于将之前的字段的类型转换
	// 为新的输出类型。
    if (!blocksHaveEqualStructure(pipeline.getHeader(), output_stream->header))
    {
        auto convert_actions_dag = ActionsDAG::makeConvertingActions(
                pipeline.getHeader().getColumnsWithTypeAndName(),
                output_stream->header.getColumnsWithTypeAndName(),
                ActionsDAG::MatchColumnsMode::Name);
        auto convert_actions = std::make_shared(convert_actions_dag);

        pipeline.addSimpleTransform([&](const Block & header)
        {
            return std::make_shared(header, convert_actions);
        });
    }
}

FilterStep更新Pipeline的过程比较简单,仅仅是创建相应的IProcessor实例对象,并添加到Pipeline中的默认分组中即可。

Query语句执行过程中的相关类

QueryPlan.h

可以看到QueryPlan是一棵树结果,它的每一个结点Node,实际上是对QueryPlanStepPtr的封装,而QueryPlanStepPtr是指向QueryPlanStep类型的对象的指针,类定义如下:

/// A tree of query steps.
/// The goal of QueryPlan is to build QueryPipeline.
/// QueryPlan let delay pipeline creation which is helpful for pipeline-level optimisations.
class QueryPlan
{
public:
    QueryPlan();
    ~QueryPlan();
    QueryPlan(QueryPlan &&);
    QueryPlan & operator=(QueryPlan &&);

    void unitePlans(QueryPlanStepPtr step, std::vector plans);
    void addStep(QueryPlanStepPtr step);

    bool isInitialized() const { return root != nullptr; } /// Tree is not empty
    bool isCompleted() const; /// Tree is not empty and root hasOutputStream()
    const DataStream & getCurrentDataStream() const; /// Checks that (isInitialized() && !isCompleted())

    void optimize();

    QueryPipelinePtr buildQueryPipeline();

    /// If initialized, build pipeline and convert to pipe. Otherwise, return empty pipe.
    Pipe convertToPipe();

    void explainPlan(WriteBuffer & buffer, const ExplainPlanOptions & options);
    void explainPipeline(WriteBuffer & buffer, const ExplainPipelineOptions & options);

    /// Set upper limit for the recommend number of threads. Will be applied to the newly-created pipelines.
    /// TODO: make it in a better way.
    void setMaxThreads(size_t max_threads_) { max_threads = max_threads_; }
    size_t getMaxThreads() const { return max_threads; }

    void addInterpreterContext(std::shared_ptr context);

    /// Tree node. Step and it's children.
    struct Node
    {
        QueryPlanStepPtr step;
        std::vector children = {};
    };

    using Nodes = std::list;

private:
    Nodes nodes;
    Node * root = nullptr;

    void checkInitialized() const;
    void checkNotCompleted() const;

    /// Those fields are passed to QueryPipeline.
    size_t max_threads = 0;
    std::vector> interpreter_context;
};

从它的定义可以看到,除了一些构成树的基本信息外,QueryPlan还包含了一个optimize()方法,它是对逻辑树进行优化的过程,后面再看它的实现吧。

QueryPipeline.h

Pipe.h

/// Pipe is a set of processors which represents the part of pipeline.
/// Pipe contains a list of output ports, with specified port for totals and specified port for extremes.
/// All output ports have same header.
/// All other ports are connected, all connections are inside processors set.
class Pipe
{
private:
    /// Destruction order: processors, header, locks, temporary storages, local contexts
    Holder holder;

    /// Header is common for all output below.
    Block header;
    Processors processors;

    /// Output ports. Totals and extremes are allowed to be empty.
    OutputPortRawPtrs output_ports;
    OutputPort * totals_port = nullptr;
    OutputPort * extremes_port = nullptr;

    /// It is the max number of processors which can be executed in parallel for each step.
    /// Usually, it's the same as the number of output ports.
    size_t max_parallel_streams = 0;

    /// If is set, all newly created processors will be added to this too.
    /// It is needed for debug. See QueryPipelineProcessorsCollector.
    Processors * collected_processors = nullptr;

    /// This methods are for QueryPipeline. It is allowed to complete graph only there.
    /// So, we may be sure that Pipe always has output port if not empty.
    bool isCompleted() const { return !empty() && output_ports.empty(); }
    static Pipe unitePipes(Pipes pipes, Processors * collected_processors);
    void setSinks(const Pipe::ProcessorGetterWithStreamKind & getter);
    void setOutputFormat(ProcessorPtr output);

    friend class QueryPipeline;
}

ITransformingStep.h

继承结构:class ITransformingStep : public IQueryPlanStep
此类表示这个结点有一个输入流和一个输出流。它的许多实现类都在*Step.h头文件中定义,如下列举了逻辑计划树中所有可能的结点类型:

.//Processors/QueryPlan/AggregatingStep.h
.//Processors/QueryPlan/AddingConstColumnStep.h
.//Processors/QueryPlan/ExpressionStep.h
.//Processors/QueryPlan/ReadNothingStep.h
.//Processors/QueryPlan/LimitByStep.h
.//Processors/QueryPlan/SettingQuotaAndLimitsStep.h
.//Processors/QueryPlan/ArrayJoinStep.h
.//Processors/QueryPlan/ReverseRowsStep.h
.//Processors/QueryPlan/OffsetStep.h
.//Processors/QueryPlan/AddingDelayedSourceStep.h
.//Processors/QueryPlan/DistinctStep.h
.//Processors/QueryPlan/CubeStep.h
.//Processors/QueryPlan/RollupStep.h
.//Processors/QueryPlan/LimitStep.h
.//Processors/QueryPlan/CreatingSetsStep.h
.//Processors/QueryPlan/TotalsHavingStep.h
.//Processors/QueryPlan/PartialSortingStep.h
.//Processors/QueryPlan/MaterializingStep.h
.//Processors/QueryPlan/FillingStep.h
.//Processors/QueryPlan/FilterStep.h
.//Processors/QueryPlan/UnionStep.h
.//Processors/QueryPlan/MergeSortingStep.h
.//Processors/QueryPlan/AddingMissedStep.h
.//Processors/QueryPlan/IQueryPlanStep.h
.//Processors/QueryPlan/ExtremesStep.h
.//Processors/QueryPlan/MergingSortedStep.h
.//Processors/QueryPlan/ISourceStep.h
.//Processors/QueryPlan/ITransformingStep.h
.//Processors/QueryPlan/MergingAggregatedStep.h
.//Processors/QueryPlan/FinishSortingStep.h

*Transform.h

物理计划树中的可能结点类型,基本上和Step结点是一一对应的:

.//Processors/IInflatingTransform.h
.//Processors/OffsetTransform.h
.//Processors/ISimpleTransform.h
.//Processors/IAccumulatingTransform.h
.//Processors/Merges/VersionedCollapsingTransform.h
.//Processors/Merges/AggregatingSortedTransform.h
.//Processors/Merges/SummingSortedTransform.h
.//Processors/Merges/MergingSortedTransform.h
.//Processors/Merges/CollapsingSortedTransform.h
.//Processors/Merges/IMergingTransform.h
.//Processors/Merges/ReplacingSortedTransform.h
.//Processors/Merges/GraphiteRollupSortedTransform.h
.//Processors/LimitTransform.h
.//Processors/Transforms/ArrayJoinTransform.h
.//Processors/Transforms/DistinctTransform.h
.//Processors/Transforms/FillingTransform.h
.//Processors/Transforms/MergeSortingTransform.h
.//Processors/Transforms/PartialSortingTransform.h
.//Processors/Transforms/ExtremesTransform.h
.//Processors/Transforms/JoiningTransform.h
.//Processors/Transforms/CopyTransform.h
.//Processors/Transforms/MaterializingTransform.h
.//Processors/Transforms/ReverseTransform.h
.//Processors/Transforms/AddingMissedTransform.h
.//Processors/Transforms/CubeTransform.h
.//Processors/Transforms/FinishSortingTransform.h
.//Processors/Transforms/LimitByTransform.h
.//Processors/Transforms/AggregatingTransform.h
.//Processors/Transforms/MergingAggregatedMemoryEfficientTransform.h
.//Processors/Transforms/LimitsCheckingTransform.h
.//Processors/Transforms/ExpressionTransform.h
.//Processors/Transforms/AggregatingInOrderTransform.h
.//Processors/Transforms/TotalsHavingTransform.h
.//Processors/Transforms/CreatingSetsTransform.h
.//Processors/Transforms/AddingConstColumnTransform.h
.//Processors/Transforms/RollupTransform.h
.//Processors/Transforms/MergingAggregatedTransform.h
.//Processors/Transforms/SortingTransform.h
.//Processors/Transforms/FilterTransform.h
.//Processors/Transforms/AddingSelectorTransform.h
.//DataStreams/SquashingTransform.h

逻辑树QueryPlan的优化过程

实际上QueryPlan在创建过程虽然已经有做了一部分优化,但这里独立了一个方法专门用于更多的优化,但目前能够看到的仅仅是Limit的推,实际上还有许多可以优化的步骤,但ClickHouse并没有实现,因此可以说CH对于简单的QUERY语句能够有一个比较的解析结果,但不善于就会复杂的语句

void QueryPlan::optimize()
{
    struct Frame
    {
        Node * node;
        size_t next_child = 0;
    };

    std::stack stack;
    stack.push(Frame{.node = root});

    while (!stack.empty())
    {
        auto & frame = stack.top();

        if (frame.next_child == 0)
        {
            /// First entrance, try push down.
            if (frame.node->children.size() == 1)
                tryPushDownLimit(frame.node->step, frame.node->children.front());
        }

        if (frame.next_child < frame.node->children.size())
        {
            stack.push(Frame{frame.node->children[frame.next_child]});
            ++frame.next_child;
        }
        else
        {
            /// Last entrance, try lift up.
            if (frame.node->children.size() == 1)
                tryLiftUpArrayJoin(frame.node, frame.node->children.front(), nodes);

            stack.pop();
        }
    }
}

你可能感兴趣的:(ClickHouse,c++,sql,ClickHouse)