对“视觉机器学习20讲配套仿真代码”的研究心得---Adaboost(三)

do_learn_nu.m



%   This file is part of GML Matlab Toolbox
%   For conditions of distribution and use, see the accompanying License.txt file.


function stump = do_learn_nu(stump, dataset, labels, weights)


%dataset=data_w(dataset) ;


%stump = set_distr(stump, get_sampl_weights(dataset)) ;


Distr = weights;


%[trainpat, traintarg] = get_train( dataset);
trainpat = dataset;
traintarg = labels;


tr_size = size(trainpat, 2);


T_MIN = zeros(3,size(trainpat,1));


for d = 1 : size(trainpat,1);


  [DS, IX] = sort(trainpat(d,:));


  TS = traintarg(IX);
  DiS = Distr(IX);
    
  lDS = length(DS);
  
  vPos = 0 * TS;
  vNeg = vPos;
  
  i = 1;
  j = 1;
  
  while i <= lDS
    k = 0;
    while i + k <= lDS && DS(i) == DS(i+k)
      if(TS(i+k) > 0)
        vPos(j) = vPos(j) + DiS(i+k);
      else
        vNeg(j) = vNeg(j) + DiS(i+k);
      end
      k = k + 1;
    end
    i = i + k;
    j = j + 1;
  end
  
  vNeg = vNeg(1:j-1);
  vPos = vPos(1:j-1);
  
  Error = zeros(1, j - 1);


  InvError = Error;
  
  IPos = vPos;
  INeg = vNeg;
  
  for i = 2 : length(IPos)
    IPos(i) = IPos(i-1) + vPos(i);
    INeg(i) = INeg(i-1) + vNeg(i);
  end
  
  Ntot = INeg(end);
  Ptot = IPos(end);
  
  for i = 1 : j - 1
    Error(i) = IPos(i) + Ntot - INeg(i);
    InvError(i) = INeg(i) + Ptot - IPos(i);
  end
  
  idx_of_err_min = find(Error == min(Error));
  if(length(idx_of_err_min) < 1)
      idx_of_err_min = 1;  
  end
  
  if(length(idx_of_err_min) <1)
    idx_of_err_min = idx_of_err_min;
  end
  idx_of_err_min = idx_of_err_min(1);
  
  idx_of_inv_err_min = find(InvError == min(InvError));
  
  if(length(idx_of_inv_err_min) < 1)
      idx_of_inv_err_min = 1;  
  end
  
  idx_of_inv_err_min = idx_of_inv_err_min(1);
  
  if(Error(idx_of_err_min) < InvError(idx_of_inv_err_min))
    T_MIN(1,d) = Error(idx_of_err_min);
    T_MIN(2,d) = idx_of_err_min;
    T_MIN(3,d) = -1;
  else
    T_MIN(1,d) = InvError(idx_of_inv_err_min);
    T_MIN(2,d) = idx_of_inv_err_min;
    T_MIN(3,d) = 1;
  end
  
end


best_dim = find(T_MIN(1,:) == min(T_MIN(1,:)));
stump.t_dim = best_dim(1);


TDS = sort(trainpat(stump.t_dim,:));


lDS = length(TDS);


DS = TDS * 0;


i = 1;
j = 1;


while i <= lDS
  k = 0;
  while i + k <= lDS && TDS(i) == TDS(i+k) 
    DS(j) = TDS(i);
    k = k + 1;
  end
  i = i + k;
  j = j + 1;
end


DS = DS(1:j-1);


stump.threshold = (DS(T_MIN(2,stump.t_dim)) + DS(min(T_MIN(2,stump.t_dim) + 1, length(DS)))) / 2;
stump.signum = T_MIN(3,stump.t_dim);




calc_output.m

%   This file is part of GML Matlab Toolbox
%   For conditions of distribution and use, see the accompanying License.txt file.


function y = calc_output(stump, XData)


y = (XData(stump.t_dim, :) <= stump.threshold) * (stump.signum) + (XData(stump.t_dim, :) > stump.threshold) * (-stump.signum);







stump_w.m

function stump = stump_w


stump.threshold = 0;
stump.signum = 1;
stump.t_dim = 1;
stump=class(stump, 'stump_w') ;
%tr=class(tr, 'threshold_w', learner(idim, odim), learner_w) ;



get_threshold_and_dim.m


function [thr, dim] = get_threshold_and_dim(stump)


thr = stump.threshold;
dim = stump.t_dim;


你可能感兴趣的:(对“视觉机器学习20讲配套仿真代码”的研究心得---Adaboost(三))