- 正港分局全6集/台剧【1080p超清中字】正港分局完整无删未删减版在哪免费在线播放观看夸克UC网盘高清迅雷网盘百度云
全网优惠分享
正港分局全6集/台剧【1080p超清中字】正港分局完整无删未删减版在哪免费在线播放观看夸克UC网盘高清迅雷网盘百度云提示:在线观看播放地址放在文章结尾,往下翻就行。在第29届釜山国际影展的2024年亚洲内容暨全球OTT大奖入围名单中,《谁是被害者:第2季》由李沐入围最佳女配角奖,曾敬骅则入围最佳新人奖;而《正港分局》则荣幸入围最佳OTT原创影集奖,许光汉也入围了最佳男主角奖。悬疑推理影集《谁是被害
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- 大模型日报10月21日
大模型空间站
人工智能
资讯篇资讯01清华开源混合精度推理系统MixQ量化权重与激活:MixQ同时量化权重和激活,使用INT8/INT4张量核心进行推理加速,并通过FP16张量核心处理少量激活中的离群值,既保持精度又提升吞吐量。其混合精度量化策略使推理精度几乎无损,精度下降不到0.1%。等价变换优化计算图:MixQ基于离群点的局部性,优化了混合精度推理的计算图,避免了重复检查离群点的开销。通过量化系数中的amax值判断矩
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- Spring AI + MCP Client 配置与使用详解
超级小忍
SpringAIspring人工智能java
前言随着大模型技术的快速发展,ModelCoordinationProtocol(MCP)逐渐成为连接本地系统和远程AI服务的重要桥梁。SpringAI是Spring官方推出的AI开发框架,支持多种语言模型接口,而MCPClient则是其集成远程推理能力的核心组件之一。本文将详细介绍如何在SpringBoot项目中配置和使用SpringAI的MCPClient,包括环境准备、依赖引入、配置方式、代
- MATC:通过数学推理和图表还原增强视觉语言预训练
AI专题精讲
模型加速人工智能AI技术应用多模态视觉语言
温馨提示:本篇文章已同步至"AI专题精讲"MATC:通过数学推理和图表还原增强视觉语言预训练摘要视觉语言数据,如图表、图形和信息图,在人类世界中无处不在。然而,现有的最先进的视觉语言模型在这些数据上的表现并不理想。我们提出了MATCHA(数学推理与图表去渲染预训练),旨在增强视觉语言模型在联合建模图表/图形与语言数据方面的能力。具体而言,我们提出了几个预训练任务,涵盖了图形解构和数值推理,这些是视
- 一起剧本杀《人非圣贤》凶手是谁剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
本文为一起剧本杀《人非圣贤》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复一起剧本杀《人非圣贤》即可获取查看一起剧本杀《人非圣贤》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑-----------------------------------------------------------------
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 【科学专栏】什么是科学(6)
opcc
从前几章的学习来看,科学知识的特征就是在于它是从事实中推导出来的。那么今天我们就来学习一下演绎推理和归纳推理。书中内容概括1.初级逻辑例11.所有哲学书都是令人厌烦的。2.这本书是一本哲学书。3.这本书是令人厌烦的。在这个论证中,(1)和(2)是前提,而(3)是结论。在我看来,这很明显:如果(1)和(2)是真的,那么(3)也一定是真的。一旦已知(1)和(2)是真的,(3)不可能是假的。断言(1)和
- 剧本杀谁是凶手《断魂楼》凶手是谁剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
本文为谁是凶手《断魂楼》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复谁是凶手《断魂楼》即可获取查看谁是凶手《断魂楼》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑-----------------------------------------------------------------------
- 剧本杀《告别诗/告白诗》剧本杀剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
本文为剧本杀《告别诗/告白诗》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复剧本杀《告别诗/告白诗》即可获取查看剧本杀《告别诗/告白诗》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑--------------------------------------------------------------
- 戏精大侦探《夜空中最亮的星》剧本杀凶手是谁剧透+真相答案复盘解析攻略【奶茶剧本杀】
VX搜_奶茶剧本杀
本文为戏精大侦探《夜空中最亮的星》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复戏精大侦探《夜空中最亮的星》即可获取查看戏精大侦探《夜空中最亮的星》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑--------------------------------------------------------
- 大模型格式
目录大模型格式:ollma可以加载ggufChatGPT说:什么是GGUF?大模型格式:Ollama模型格式只能运行已打包成.gguf格式的模型,或通过其Modelfile方式构建ModelScope模型格式大多使用HuggingFaceTransformers格式,如.bin、.safetensors,与Ollama不兼容模型加载方式不同Ollama自带封装推理引擎(ggml/llama.cpp
- 深入解析AI原生云服务冷启动时延优化:JVM字节码预编译引擎核心技术剖析
梦玄海
AI-nativejvmrisc-vgolangjava
引言:冷启动时延的挑战与突破方向在AI原生云服务架构中,冷启动时延(ColdStartLatency)是影响服务响应速度的关键瓶颈指标。根据AWSLambda实测数据,传统JVM应用的冷启动时间高达1-5秒,这在需要快速弹性扩缩容的AI推理、实时数据处理等场景中可能造成严重的服务降级。本文聚焦JVM字节码预编译引擎(BytecodePrecompilationEngine),深度解构其在冷启动优化
- 大型语言模型在自动化AI科学研究与论文撰写中的应用与展望
这是Jamon
AI4SR人工智能
1.引言:LLM驱动科学研究与论文撰写的范式转变大型语言模型(LLM)的快速发展正在科学发现领域引发一场深刻的范式转变。这些模型正从最初的任务特定自动化工具,逐步演变为能够自主执行复杂任务的智能代理,从根本上重新定义了研究过程以及人机协作的模式。LLM所展现出的新兴能力,例如高级规划、复杂推理和精确指令遵循,显著加速了科学发现的步伐。传统科学研究通常是一个由人类主导的、高度线性且劳动密集型的过程,
- LLM4SR: A Survey on Large Language Models for Scientific Research
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
文章主要内容文章围绕大语言模型(LLMs)在科学研究中的应用展开,系统探讨了其在科研各关键阶段的作用、方法、挑战及未来方向。科学假设发现:LLMs生成科学假设的研究源于“基于文献的发现”和“归纳推理”。现有方法通过灵感检索策略、反馈模块等组件提升假设生成质量,相关基准测试分为基于文献和数据驱动两类,评估指标涵盖新颖性、有效性等。虽取得一定成果,但面临实验验证困难、依赖现有LLMs能力等挑战。实验规
- DeepSeekMath:突破开源语言模型在数学推理中的极限
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DeepSeekMath:突破开源语言模型在数学推理中的极限摘要数学推理由于其复杂且结构化的特性,对语言模型构成了重大挑战。本文介绍了DeepSeekMath7B,该模型在DeepSeek-Coder-Base-v1.57B的基础上继续进行了预训练,使用了来自CommonCrawl的120B数学相关token,同时包含自然语言和代码数据。DeepSeekM
- 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容transformerchatgpt深度学习lstmkimiAgentAIGC
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十七开源王炸!KimiK2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入一、架构
- 剧本杀《关于北原千夜的一切》剧本杀剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
本文为剧本杀《关于北原千夜的一切》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复剧本杀《关于北原千夜的一切》即可获取查看剧本杀《关于北原千夜的一切》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑--------------------------------------------------------
- 百变大侦探《美人心思有点野》剧本杀剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
本文为百变大侦探《美人心思有点野》剧本杀测评+部分真相复盘,获取完整真相复盘只需两步:①、关注微信公众号【奶茶剧本杀】→②、回复百变大侦探《美人心思有点野》即可获取查看百变大侦探《美人心思有点野》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑--------------------------------------------------------
- 知识表示与推理:AI智能的核心技术
AIGC应用创新大全
人工智能easyui前端ai
知识表示与推理:AI智能的核心技术1.引入与连接:AI如何"思考"世界?想象一下,当你询问智能助手:"我明天需要带伞吗?"它如何得出答案?它需要理解"带伞"与"天气"的关系,需要获取天气预报信息,需要推断明天的天气状况,最终综合这些"知识"给出建议。这一看似简单的过程,背后正是AI的核心能力:知识表示(如何"记住"信息)和推理(如何"思考"问题)。从Siri到AlphaGo,从推荐系统到自动驾驶,
- 百变大侦探《梦里花》凶手是谁剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
①、关注微信公众号【奶茶剧本杀】→②、回复百变大侦探《梦里花》即可获取查看百变大侦探《梦里花》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑---------------------------------孟公子本是来求药,但在书房发现了毒的来源,便去和灵百合对质,原来他的师父是被灵百合所害,为此孟公子和灵百合大打出手,起了杀心。尹花魁和灵百合原本是亲
- 本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
迎风斯黄
llamadocker容器kimi
KimiK2是MoonshotAI于2025年7月11日发布的高性能多专家语言模型(MoE),支持最大128K上下文,激活参数规模为32B,具备极强的推理、代码生成与多轮对话能力。自从其权重以多种格式开源以来,许多开发者希望将其部署在本地,以获得更高的私密性和灵活性。本文将详细介绍三种主流本地部署路径,并提供完整的配置步骤和使用建议。准备工作(通用部分)在进行部署前,请准备如下环境与资源:✅最低硬
- KAIST:LLM混合递归推理
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:Mixture-of-Recursions:LearningDynamicRecursiveDepthsforAdaptiveToken-LevelComputation来源:arXiv,2507.10524摘要缩放语言模型解锁了令人印象深刻的能力,但伴随的计算和内存需求使训练和部署都很昂贵。现有的效率工作通常针对参数共享或自适应计算,留下了如何同时实现两者的问题。我们引入了混合递归(MoR
- 关于Http直接请求方式调用CosyVoice2-API(非代码)
菜Queen
AIGChttp
文章目录1.前情提要2.API调用详解1.音频合成接口请求地址参数说明参数示例结果说明结果示例可能会遇到的问题2.获取操作步骤请求地址参数说明参数示例结果说明结果示例3.获取推理种子请求地址参数说明参数示例结果说明结果示例1.前情提要系统版本:Ubuntu22.04.1版本:CosyVoice2-2024/12python环境:miniconda3>python3.10注:CosyVoice2的本
- 大模型本地部署-dify私有化部署-教程
一、简介dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,可以让您快速从原型到生产。二、核心功能列表1、工作流:在画布上构建和测试功能强大的AI工作流程。2、全面的模型支持:与数百种专有/开源LLMs以及数十种推理提供商和自托管解决方案无缝集成,涵盖GPT、Mistral、Llama3以及任何与OpenAIAPI兼容的模型。完整
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- GPT-4和Claude哪个好
姜暮儿
人工智能
选择GPT-4还是Claude?这就像在问“苹果还是橙子哪个更好”——答案完全取决于你的具体需求。两者都是顶尖大语言模型,但各有特色。我为你做了详细对比,帮你快速定位哪个更适合你:核心能力对比特性GPT-4(OpenAI)Claude(Anthropic)语言理解/推理顶尖水平,尤其擅长逻辑推理、代码生成极强,注重自然语言流畅性长文本处理上下文最大128Ktokens,但实际效果不如C
- 我是谜《圣洁的伊斯尔雪山》剧本杀凶手是谁剧透+真相答案复盘解析攻略
VX搜_奶茶剧本杀
①、关注微信公众号【奶茶剧本杀】→②、回复我是谜《圣洁的伊斯尔雪山》即可获取查看剧本杀我是谜《圣洁的伊斯尔雪山》剧本杀真相答案复盘+凶手剧透:以下是玩家评测+部分关键证据,凶手,时间线,复盘解析,推理逻辑---------------------------------2.整体背景故事和设定A.姜薛背景:1995年出生于Y国,常做恶梦。2017年从舞蹈学院毕业后在市剧院跳芭蕾结识死者,与楚天楚为夫
- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不