- Java实现归并排序算法详解及优化
捕风捉你
从0开始学算法java排序算法算法
引言归并排序(MergeSort)是一种有效、稳定且常用的排序算法,尤其在处理大规模数据时表现良好。本文将详细讲解如何使用Java实现归并排序算法,并结合图解和实例代码,帮助您全面理解这一高级排序算法。同时,我们还将探讨归并排序的优化方法,以进一步提高其性能。归并排序算法的原理归并排序是一种分治算法,它将数组分成两个子数组,分别对两个子数组进行排序,然后将排好序的子数组合并成一个有序数组。算法步骤
- Python 归并排序算法详解
licy__
排序算法算法数据结构
目录Python归并排序算法详解1.归并排序原理2.Python代码实现3.时间复杂度分析4.空间复杂度分析5.实际例子6.归并排序的优势和劣势优势劣势7.总结Python归并排序算法详解归并排序(MergeSort)是一种高效的、基于比较的排序算法,属于分治法的一种。本文将详细介绍归并排序的原理、Python代码实现、时间复杂度分析和实际例子。1.归并排序原理归并排序的基本思想是将待排序的序列分
- Java 归并排序算法详解
licy__
排序算法算法数据结构
Java归并排序算法详解归并排序(MergeSort)是一种高效的、基于比较的排序算法,属于分治法的一种。本文将详细介绍归并排序的原理、Java代码实现、时间复杂度分析和实际例子。1.归并排序原理归并排序的基本思想是将待排序的序列分成若干个小序列,每个小序列单独排序,然后再将这些有序的小序列合并成一个整体有序的序列。具体步骤如下:分解:将序列分成两个子序列。解决:递归地对两个子序列进行归并排序。合
- 【人工智能】人工智能的10大算法详解(优缺点+实际案例)
ChatGPT-千鑫
人工智能人工智能算法gpt-3AI编程gptcodemoss能用AI
人工智能(AI)是现代科技的重要领域,其中的算法是实现智能的核心。本文将介绍10种常见的人工智能算法,包括它们的原理、训练方法、优缺点及适用场景。1.线性回归(LinearRegression)模型原理线性回归用于建立自变量(特征)与因变量(目标)之间的线性关系。其目标是寻找最佳拟合直线,使得预测值与实际值之间的误差最小化。模型训练通过最小二乘法来最小化预测值与真实值之间的误差,得到线性回归方程的
- 【Python】数据结构,链表,算法详解
AIAdvocate
python数据结构链表排序算法广度优先深度优先
今日内容大纲介绍自定义代码-模拟链表删除节点查找节点算法入门-排序类的冒泡排序选择排序插入排序快速排序算法入门-查找类的二分查找-递归版二分查找-非递归版分线性结构-树介绍基本概述特点和分类自定义代码-模拟二叉树1.自定义代码-模拟链表完整版"""案例:自定义代码,模拟链表.背景: 顺序表在存储数据的时候,需要使用到连续的空间,如果空间不够,就会导致扩容失败,针对于这种情况,我们可以通过链表实现
- Paxos 算法详解(一)
林木森^~^
数据结构和算法算法分布式java
前言提到分布式算法,就不得不提Paxos算法,在过去几十年里,它基本上是分布式共识的代名词,因为当前最常用的一批共识算法都是基于它改进的。比如,FastPaxos算法、CheapPaxos算法、Raft算法、ZAB协议等等。兰伯特提出的Paxos算法包含2个部分:一个是BasicPaxos算法,描述的是多节点之间如何就某个值(提案Value)达成共识;另一个是Multi-Paxos思想,描述的是执
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- python a星算法_a*算法(Python)的实现,A
weixin_39911567
pythona星算法
前言关于A*算法的实现是很早之前的一次开发中的成果,并做了一些改进。当然,在这里就不记录改进部分了,因为其中还有一些争议。这里仅是对A*算法的理解和使用Python实现。参考链接之所以放在前面,是因为这些链接的参考价值特别高,如果希望获得更多的了解,可以通过以下链接进行学习。英文网站redblobgames(红色斑点游戏)中文网站csdn:A星算法详解(个人认为最详细,最通俗易懂的一个版本)|模块
- 最短路径算法——A*算法
有一点点想CoCo你
算法
A*算法是静态路网中求解最短路径最有效的直接搜索算法,也是解决许多搜索问题的有效算法,广泛应用于机器人路径搜索、游戏动画路径搜索等。它是图搜索算法的一种。A*算法是一种启发式的搜索算法,它是基于深度优先算法(DepthFirstSearch,DFS)和广度优先算法(BreadthFirstSearch,BFS)的一种融合算法,按照一定原则确定如何选取下一个结点。参考:A*寻路算法详解#A星#启发式
- 基于时序差分的无模型强化学习:Q-learning 算法详解
晓shuo
算法强化学习
目录一、无模型强化学习中的时序差分方法与Q-learning1.1时序差分法1.2Q-learning算法状态-动作值函数(Q函数)Q-learning的更新公式Q-learning算法流程Q-learning的特点1.3总结一、无模型强化学习中的时序差分方法与Q-learning 动态规划算法依赖于已知的马尔可夫决策过程(MDP),在环境的状态转移概率和奖励函数完全明确的情况下,智能体无需与环
- 【老生谈算法】matlab实现文字识别算法——文字识别算法
阿里matlab建模师
matlab算法原理详解matlab算法计算机视觉
基于matlab的文字识别算法1、文档下载:本算法已经整理成文档如下,有需要的朋友可以点击进行下载说明文档(点击下载)本算法文档【老生谈算法】matlab实现文字识别算法.doc更多matlab算法原理及源码详解可点击下方文字直达:500例精选matlab算法原理及源码详解——老生谈算法2、算法详解:本课程设计主要运用MATLAB的仿真平台设计进行文字识别算法的设计与仿真。也就是用于实现文字识别算
- Java实现的加密与解密算法详解
数据冰山
本文还有配套的精品资源,点击获取简介:加密与解密算法是信息技术中维护数据安全的核心技术,确保数据的隐私性和完整性。本文详细介绍了包括RSA、AES、3DES、Blowfish、RC4、IDEA、DSA和Diffie-Hellman等在内的多种加密和解密算法,并探讨了它们在Java中的实现。这些算法各有特点,适用于不同的安全需求和应用场景,从非对称加密到对称加密,再到数字签名和密钥交换协议,它们共同
- K近邻(KNN)算法详解及Python实现
天明豆豆
K近邻(KNN)算法详解及Python实现今天浏览网页看到一篇用Python实现K近邻(KNN)算法的详解教程,果断收藏下来,虽然是五年前的文章,可能有些语法已经不适合,但文章语法思路还是可以值得借鉴的,收藏之后以后慢慢研究。KNN依然是一种监督学习算法KNN(KNearestNeighbors,K近邻)算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训
- 哈希表算法详解
真的没事鸭
数据结构与算法散列表算法哈希算法
哈希表哈希表(Hashtable,也叫散列表),是根据关键码值(Keyvalue)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做哈希函数,存放记录的数组叫做哈希表。给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(H
- 二分查找(算法详解+模板+例题)
Alex_Fufu
算法
一.二分的定义二分法(Bisectionmethod)即一分为二的方法.设[a,b]为R的闭区间.逐次二分法就是造出如下的区间序列([an,bn]):a0=a,b0=b,且对任一自然数n,[an+1,bn+1]或者等于[an,cn],或者等于[cn,bn],其中cn表示[an,bn]的中点。二.基本思路1.将数组排序。2.一直将数组除以二,直到找到那个数为止。3.用一个数x存储左节点坐标和右节点坐
- 安卓文件加密 (File-Based Encryption, FBE) 加密算法--AES-256-XTS
achirandliu
AndroidAES-256-XTSFBE加密算法
标签:File-BasedEncryption加密算法;AES-256-XTS;安卓文件加密(File-BasedEncryption,FBE)加密算法详解1.什么是文件加密(FBE)?文件加密(File-BasedEncryption,FBE)是Android在7.0(Nougat)及更高版本中引入的一种加密机制,它允许不同的文件使用不同的加密密钥进行加密。与全盘加密(Full-DiskEncr
- 每天一个数据分析题(四百九十八)- Apriori算法
跟着紫枫学姐学CDA
数据分析题库数据分析算法数据挖掘
Apriori算法中,候选序列的个数比候选项集的个数大得多,产生更多候选的原因有?A.一个项在项集中最多出现一次,但一个事件可以在序列中出现多次B.一个事件在序列中最多出现一次,但一个项在项集中可以出现多次C.次序在序列中和项集中都是重要的D.序列不可以合并数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 「算法」二分查找:一道题带你领悟二分查找的精髓!
Ice_Sugar_7
算法详解算法
个人主页:Ice_Sugar_7所属专栏:算法详解欢迎点赞收藏加关注哦!二分查找确定左端点调整left和right细节处理确定右端点调整left和right细节处理模板直接上题:在排序数组中查找元素的第一个和最后一个位置确定左端点我们记左、右指针为left和right,中点为mid,左端点为target划分区间:target左边为一个区间,target和target右边为另一个区间。这样左区间就都
- 「算法」二分查找1:理论&细节
Ice_Sugar_7
算法详解算法数据结构
个人主页:Ice_Sugar_7所属专栏:算法详解欢迎点赞收藏加关注哦!二分查找算法简介这个算法的特点就是:细节多,出错率高,很容易就写成死循环有模板,但切记要在理解的基础上记忆,不要死记硬背。有三个模板,一个是本文要讲的简单模板,另外两个分别是查找左、右边界的模板,会在后面的文章中讲解正文时间复杂度的推导过程啥时候用二分算法?能找到某种规律,根据这个规律能找到某个点,以这个点能把区间划分为两块,
- 《算法零基础100讲》(第75讲) 滑动窗口(一) - 固定窗口
英雄哪里出来
《算法零基础100讲》算法数据结构滑动窗口
文章目录零、写在前面一、概念定义二、题目描述三、算法详解四、源码剖析五、推荐专栏六、习题练习零、写在前面 这是《算法零基础100讲》专栏打卡学习的第75天了。如果觉得本专栏太贵无法承受,在博主主页添加博主好友,获取付费专栏优惠券。 每天专栏的题,做不出来没关系,因为困难的题涉及知识点较多,可能会涉及到后面的章节,所以不要着急,内容能看懂,能自己分析,能做出简单题就行。 在刷题的过程中,总结自
- 13种排序算法详解(相当清楚,还附有flash动画)
沐恩_
数据结构与算法排序算法
0、前言从这一部分开始直接切入我们计算机互联网笔试面试中的重头戏算法了,初始的想法是找一条主线,比如数据结构或者解题思路方法,将博主见过做过整理过的算法题逐个分析一遍(博主当年自己学算法就是用这种比较笨的刷题学的,囧),不过又想了想,算法这东西,博主自己学的过程中一直深感,基础还是非常重要的,很多难题是基础类数据结构和题目的思想综合发散而来。比如说作为最基本的排序算法就种类很多,而事实上笔试面试过
- R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化|附代码数据
数据挖掘
全文链接:http://tecdat.cn/?p=30360最近我们被客户要求撰写关于网络购物用户行为的研究报告,包括一些图形和统计输出。随着网络的迅速发展,依托于网络的购物作为一种新型的消费方式,在全国乃至全球范围内飞速发展电子商务成为越来越多消费者购物的重要途径。我们被客户要求撰写关于网络购物行为的研究报告。项目计划使用数据挖掘的方法,以京东商城网购用户的网络购物数据为基础,对网络购物行为的三
- 【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)
机器学习python算法
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预
- 【算法详解】STitch3D:空间转录组数据和单细胞RNA测序数据共同建模的空转数据对齐和整合算法,实现更高分辨率的3D结构重建
yaoyao255
算法详解算法论文阅读论文笔记机器学习人工智能
目录0参考文献1模型特色2算法解析2.1模型概述2.2获得隐空间表示2.3获得细胞类型比例2.4处理批次效应0参考文献STitch3D原论文:Constructionofa3Dwholeorganismspatialatlasbyjointmodellingofmultiplesliceswithdeepneuralnetworks1模型特色生物体器官具有复杂的三维结构,生理过程的进行也很少在二维
- 质数算法详解
苏这样
Pythonpython青少年编程算法
质数是什么质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。接下来,我们一步步探索质数算法的奥秘。判断质数的基本方法根据质数的概念,质数只有两个因数——1和他本身,也就是说,我们判断一个数的因数个数,如果只有2个,就是质数。所以我们就把判断质数的算法转换成了统计因数个数的算法。这是根据质数的基本概念写出来的代码,是理解
- 无锁类原理详解与使用,无锁算法详解,全是干货
纵然间
Javajava开发语言
目录编辑一、无锁类的原理详解1.1CAS1.2CPU指令二、无锁类的使用2.1AtomicInteger2.1.1概述2.1.2主要接口2.1.3主要接口实现2.2Unsafe2.2.1概述2.2.3主要接口2.3AtomicReference2.3.1概述2.3.2主要接口2.4AtomicStampedReference2.4.1概述2.4.2主要接口2.5AtomicIntegerArray
- OI入门算法详解:含大量优质习题及题解!
准确、系统、简洁地讲算法
算法数据结构
文章目录单调队列单调栈拓展:区间问题的另一个常见解法——双指针优先队列链表分治ST表单调队列P2698题目描述,给定一些矩形,有横坐标x,高度h求一个最小的窗口,可以使得有一个窗口中的最大高度减最小高度>=d输入d、n每个xyd、n每个xyd、n每个xy解法:二分答案,判断用一个递增单调队列求滑动窗口最大值,一个递减单调队列求最小值启示1.答案满足单调性,即本题中窗口变大一定不会使得窗口内最大值-
- Leetcode 47.全排列II 算法详解
Daydreaming Kid
Leetcode刷题之路leetcode算法职场和发展学习
给定一个可包含重复数字的序列nums,按任意顺序返回所有不重复的全排列。示例1:输入:nums=[1,1,2]输出:[[1,1,2],[1,2,1],[2,1,1]]示例2:输入:nums=[1,2,3]输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]提示:1>ans=newLinkedListtmp=newLinkedList>permut
- Apriori介绍及代码批注
Fishermen_sail
机器学习数据挖掘scikit-learnpython机器学习推荐算法
一、Apriori原理解析1.概述关联规则分析是数据挖掘中最活跃的研究方法之一,目的是在一个数据集中找到各项之间的关联关系,而这种关系并没有在数据中直接体现出来。以超市的销售数据为例,当存在很多商品时,可能的商品组合数量达到了令人望而却步的程度,这是提取关联规则的最大困难。因此各种关联规则分析算法从不同方面入手减少可能的搜索空间大小以及减少扫描数据的次数。Apriori算法是最经典的挖掘频繁项集的
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla