转载自:http://blog.csdn.net/embedded_hunter
http://www.360doc.com/content/12/0405/00/1671317_200882538.shtml
Linux应用程序在内存中的布局,由高地址到低地址依次为:栈、堆、BSS段、数据段、代码段。
代码段的起始地址固定为0x8048000,无论哪一个应用程序它的代码段起始地址一定是0x8048000,这里的地址虚拟地址,映射到不同的物理地址中去。
堆主要用来分配动态内存,操作系统提供了malloc等内存分配机制来供程序员进行堆内存的分配,同时,堆内存的释放需要程序员来进行。malloc分配的是虚拟地址空间,和用到的实实在在的物理内存是两码事,只有真正往空间里写东西了,os内核会触发缺页异常,然后才真正得到物理内存。32位Linux系统总共有4G内存空间,Linux把最高的1G(0xC0000000-0xFFFFFFFF)作为内核空间,把低地址的3G(0x00000000-0xBFFFFFFF)作为用户空间。malloc函数在这3G的用户空间中分配内存,能分配到的大小不超过3G,需除去栈、数据段(初始化及未初始化的)、共享so及代码段等占的内存空间。
栈由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。栈的地址空间是由高向低减少的(先分配高地址)。在Linux中,用ulimit -a命令可以看到栈的最大分配空间(stack size)是8192kB,即8MB多。
进程地址空间中典型的存储区域分配:
从图中可以看出:
Linux中进程最大地址空间:
因为每个进程可以通过系统调用进入内核,因此,Linux内核由系统的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间。其中,很重要的一点是虚拟地址空间,并不是实际的地址空间。进程地址空间是用多少分配多少,4G仅仅是最大限额而已。往往,一个进程的地址空间总是小于4G的,你可以通过查看/proc/pid/maps文件来获悉某个具体进程的地址空间。但进程的地址空间并不对应实际的物理页,Linux采用Lazy的机制来分配实际的物理页("Demand paging"和"和写时复制(Copy On Write)的技术"),从而提高实际内存的使用率。即每个虚拟内存页并不一定对应于物理页。虚拟页和物理页的对应是通过映射的机制来实现的,即通过页表进行映射到实际的物理页。因为每个进程都有自己的页表,因此可以保证不同进程从上到下(地址从高到低)依次为栈(函数内部局部变量),堆(动态分配内存) ,bss段(存未初始化的全局变量),数据段(存初始化的全局变量),文本段(存代码)同虚拟地址可以映射到不同的物理页,从而为不同的进程都可以同时拥有4G的虚拟地址空间提供了可能。
代码测试1:
#include <stdio.h> #include <stdlib.h> char bss_1[40]; static double bss_2; int data_1 = 13; static long data_2 = 2001; int main(int argc, char *argv[]) { int stack_1 = 3, stack_2, *heap_1, *heap_2; heap_1 = malloc(sizeof(stack_1)); heap_2 = malloc(sizeof(stack_1)); bss_1[5] = stack_1; bss_2 = 2.0 * data_1;
printf("stack segment: stack_1:%p, stack_2:%p\n", &stack_1, &stack_2); printf("heap segment: heap_1:%p, heap_2:%p\n", heap_1, heap_2); printf("bss segment: bss_1:%p, bss_2:%p\n", bss_1, &bss_2); printf("data segment: data_1:%p, data_2:%p\n", &data_1, &data_2); printf("the stack top is near %p\n", &stack_1);
return 0; }
运行结果:
stack segment: stack_1:0xbfab012c, stack_2:0xbfab0128
stack segment: stack_1:0xbfb9e2ec, stack_2:0xbfb9e2e8
heap segment: heap_1:0x8c56008, heap_2:0x8c56018
bss segment: bss_1:0x804a040, bss_2:0x804a028
data segment: data_1:0x804a018, data_2:0x804a01c
the stack top is near 0xbfb9e2ec
由此可见:从上到下(地址从高到低)依次为栈(函数内部局部变量),动态链接库,堆(动态分配内存),bss段(存未初始化的全局变量),数据段(存初始化的全局变量),文本段(存代码)
代码测试2:
#include <stdio.h> int global_init_a = 1; //全局初始化的变量 int global_uinit_a; //全局未初始化的变量 static int static_global_init_a = 1; //全局静态初始化变量 static int static_global_uinit_a; //全局静态未初始化变量 const int const_global_a = 1; //全局常量 int global_init_b = 1; //全局初始化的变量 int global_uinit_b; //全局未初始化的变量 static int static_global_init_b = 1; //全局静态初始化变量 static int static_global_uinit_b; //全局静态未初始化变量 const int const_global_b = 1; //全局常量 void main() { int local_init_a = 1; //局部初始化变量 int local_uinit_a; //局部未初始化变量 static int static_local_init_a = 1; //局部静态初始化变量 static int static_local_uinit_a; //局部静态未初始化变量 const int const_local_a = 1; //局部常量 int local_init_b = 1; //局部初始化变量 int local_uinit_b; //局部未初始化变量 static int static_local_init_b = 1; //局部静态初始化变量 static int static_local_uinit_b; //局部静态未初始化变量 const int const_local_b = 1; //局部常量 int *malloc_p_a; malloc_p_a = malloc(sizeof(int)); //通过malloc分配得到的局部 printf("&global_init_a=%p,global_init_a=%d\n",&global_init_a,global_init_a); printf("&global_uinit_a=%p,global_uinit_a=%d\n",&global_uinit_a,global_uinit_a); printf("&static_global_init_a=%p,static_global_init_a=%d\n",&static_global_init_a,static_global_init_a); printf("&static_global_uinit_a%p,static_global_uinit_a=%d\n",&static_global_uinit_a,static_global_uinit_a); printf("&const_global_a=%p,const_global_a=%d\n",&const_global_a,const_global_a); printf("&global_init_b=%p,global_init_b=%d\n",&global_init_b,global_init_b); printf("&global_uinit_b=%p,global_uinit_b=%d\n",&global_uinit_b,global_uinit_b); printf("&static_global_init_b=%p,static_global_init_b=%d\n",&static_global_init_b,static_global_init_b); printf("&static_global_uinit_b%p,static_global_uinit_b=%d\n",&static_global_uinit_b,static_global_uinit_b); printf("&const_global_b=%p,const_global_b=%d\n",&const_global_b,const_global_b); printf("&local_init_a=%p,local_init_a=%d\n",&local_init_a,local_init_a); printf("&local_uinit_a=%p,local_uinit_a=%d\n",&local_uinit_a,local_uinit_a); printf("&static_local_init_a=%p,static_local_init_a=%d\n",&static_local_init_a,static_local_init_a); printf("&static_local_uinit_a%p,static_local_uinit_a=%d\n",&static_local_uinit_a,static_local_uinit_a); printf("&const_local_a=%p,const_local_a=%d\n",&const_local_a,const_local_a); printf("&local_init_b=%p,local_init_b=%d\n",&local_init_b,local_init_b); printf("&local_uinit_b=%p,local_uinit_b=%d\n",&local_uinit_b,local_uinit_b); printf("&static_local_init_b=%p,static_local_init_b=%d\n",&static_local_init_b,static_local_init_b); printf("&static_local_uinit_b%p,static_local_uinit_b=%d\n",&static_local_uinit_b,static_local_uinit_b); printf("&const_local_b=%p,const_local_b=%d\n",&const_local_b,const_local_b); printf("malloc_p_a=%p,*malloc_p_a=%d\n",malloc_p_a,*malloc_p_a); while(1); }
Linux下查看程序运行时的内存空间分配
#ps aux #查看进程ID
#cat /proc/进程ID/maps
下面是输出结果。
先仔细分析一下上面的输出结果,看看能得出什么结论。貌似很难分析出来什么结果。好了我们继续往下看吧。
接下来,通过查看proc文件系统下的文件,看一下这个进程的真实内存分配情况。(我们需要在程序结束前加一个死循环,不让进程结束,以便我们进一步分析)。
在return 0前,增加 while(1); 语句
重新编译后,运行程序,程序将进入死循环。
使用ps命令查看一下进程的pid
#ps -aux | grep a.out
查看/proc/2699/maps文件,这个文件显示了进程在内存空间中各个区域的分配情况。
#cat /proc/2699/maps
文件有6列,分别为:
地址:库在进程里地址范围
权限:虚拟内存的权限,r=读,w=写,x=,s=共享,p=私有;
偏移量:库在进程里地址范围
设备:映像文件的主设备号和次设备号;
节点:映像文件的节点号;
路径: 映像文件的路径
上面红颜色标出的几个区间是我们感兴趣的区间:
我们把这些数据与最后一次的程序运行结果进行比较,看看有什么结论。
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&global_uninit_a=0x804a04c 全局未初始化:数据段 global_uninit_a=0
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&static_global_uninit_a=0x804a038 全局静态未初始化:数据段 static_global_uninit_a=0
&const_global_a=0x80487c0 全局只读变量: 代码段 const_global_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&global_uninit_b=0x804a048 全局未初始化:数据段 global_uninit_b=0
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_global_uninit_b=0x804a03c 全局静态未初始化:数据段 static_global_uninit_b=0
&const_global_b=0x80487c4 全局只读变量: 代码段 const_global_b=1
&local_init_a=0xbff8600c 局部初始化:栈 local_init_a=1
&local_uninit_a=0xbff86008 局部未初始化:栈 local_uninit_a=134514459
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_uninit_a=0x804a040 局部静态未初始化:数据段 static_local_uninit_a=0
&const_local_a=0xbff86004 局部只读变量:栈 const_local_a=1
&local_init_b=0xbff86000 局部初始化:栈 local_init_b=1
&local_uninit_b=0xbff85ffc 局部未初始化:栈 local_uninit_b=-1074241512
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_local_uninit_b=0x804a044 局部静态未初始化:数据段 static_local_uninit_b=0
&const_local_b=0xbff85ff8 局部只读变量:栈 const_local_b=1
p_chars=0x80487c8 字符串常量:代码段 p_chars=abcdef
malloc_p_a=0x8a7e008 malloc动态分配:堆 *malloc_p_a=0
通过以上分析我们暂时可以得到的结论如下,在进程的地址空间中:
这里我们没有发现BSS段,但是我们将未初始化的数据按照地址进行排序看一下,可以发现一个规律。
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_global_uninit_a=0x804a038 全局静态未初始化:数据段 static_global_uninit_a=0
&static_global_uninit_b=0x804a03c 全局静态未初始化:数据段 static_global_uninit_b=0
&static_local_uninit_a=0x804a040 局部静态未初始化:数据段 static_local_uninit_a=0
&static_local_uninit_b=0x804a044 局部静态未初始化:数据段 static_local_uninit_b=0
&global_uninit_b=0x804a048 全局未初始化:数据段 global_uninit_b=0
&global_uninit_a=0x804a04c 全局未初始化:数据段 global_uninit_a=0
这里可以发现,初始化的和未初始化的数据好像是分开存放的,因此我们可以猜测BSS段是存在的,只不过数据段是分为初始化和未初始化(即BSS段)的两部分,他们在加载到进程地址空间时是合并为数据段了,在进程地址空间中没有单独分为一个区域。
还有一个问题,静态数据与非静态数据是否是分开存放的呢?请读者自行分析一下。
接下来我们从程序的角度看一下,这些存储区域是如何分配的。首先我们先介绍一下ELF文件格式。
一个程序编译生成目标代码文件(ELF文件)的过程如下,此图引自《程序员的自我修养》一书的一个图:
!此处貌似有个错误 int a=1; int b;应该存储在栈区
可以通过readelf命令查看EFL文件的相关信息,例如 readelf -a a.out ,我们只关心各个段的分配情况,因此我们使用以下命令:
将这里的内存布局与之前看到的程序的运行结果进行分析:
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&global_uninit_a=0x804a04c 全局未初始化:BSS段 global_uninit_a=0
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&static_global_uninit_a=0x804a038 全局静态未初始化:BSS段 static_global_uninit_a=0
&const_global_a=0x80487c0 全局只读变量: 只读数据段 const_global_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&global_uninit_b=0x804a048 全局未初始化:BSS段 global_uninit_b=0
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_global_uninit_b=0x804a03c 全局静态未初始化:BSS段 static_global_uninit_b=0
&const_global_b=0x80487c4 全局只读变量: 只读数据段 const_global_b=1
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_uninit_a=0x804a040 局部静态未初始化:BSS段 static_local_uninit_a=0
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_local_uninit_b=0x804a044 局部静态未初始化:BSS段 static_local_uninit_b=0
p_chars=0x80487c8 字符串常量:只读数据段 p_chars=abcdef
ELF 文件一般包含以下几个段 :
分析到这以后,我们在和之前分析的结果对比一下,会发现确实存在BSS段,地址为0804a030 ,大小为0x20,之前我们的程序中未初始化的的确存放在这个地址区间中了,只不过执行exec系统调用时,将这部分的数据初始化为0后,放到了进程地址空间的数据段中了,在进程地址空间中就没有必要存在BSS段了,因此都称做数据段。同理,.rodata字段也是与text段放在一起了。
在ELF文件中,找不到局部非静态变量和动态分配的内容。