- Edge-TTS的使用
Edge-TTS的使用Edge-TTS是一个的文本转语音(TTS)Python库。它利用了微软AzureCognitiveServices的强大功能,能够将文本信息转换成流畅自然的语音输出。这个库特别适合需要在应用程序中加入语音功能的开发者使用。edge-tts在github上已开源,有3的kstar!替代国内收费的TTS服务完全没问题。它支持40多种语言,300多种声音,效果很不错~github
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- OpenAI-Compatible Edge-TTS API 使用教程
马琥承
OpenAI-CompatibleEdge-TTSAPI使用教程openai-edge-ttsFree,high-qualitytext-to-speechAPIendpointtoreplaceOpenAI,Azure,orElevenLabs项目地址:https://gitcode.com/gh_mirrors/op/openai-edge-tts1.项目介绍本项目提供了一个本地化的、与Ope
- 开源项目安装与配置指南:OpenAI-Compatible Edge-TTS API
霍虹情Victorious
开源项目安装与配置指南:OpenAI-CompatibleEdge-TTSAPIopenai-edge-ttsFree,high-qualitytext-to-speechAPIendpointtoreplaceOpenAI,Azure,orElevenLabs项目地址:https://gitcode.com/gh_mirrors/op/openai-edge-tts1.项目基础介绍OpenAI-
- 助力您发SCI 机器学习(ML)在材料领域应用专题
YEcenfei
分子动力学催化材料机器学习人工智能python
第一天机器学习在材料与化学常见的方法理论内容1.机器学习概述2.材料与化学中的常见机器学习方法3.应用前沿实操内容Python基础1.开发环境搭建2.变量和数据类型3.列表4.if语句5.字典6.For和while循环实操内容Python基础(续)1.函数2.类和对象3.模块Python科学数据处理1.NumPy2.Pandas3.Matplotlib第二天机器学习材料与化学应用<
- Edge-TTS在广电系统中的语音合成技术的创新应用
Edge-TTS在广电系统中的语音合成技术的创新应用作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。摘要随着人工智能技术的快速发展,文字转语音(Text-to-Speech,TTS)系统已成为多种应用的重要组成部分,尤其在广播电视领域。本文介绍了一种基于Edge-TTS大模型的文字转语音工具,该工具结合了现代文本处理和语
- 小柿子影视安卓版,跨平台开发的技术挑战与解决方案
2501_92530989
音视频百度经验分享其他
在移动应用开发的浪潮中,视频类App因其对性能、用户体验、跨平台兼容性要求高,成为开发者面临的重点技术难题之一。本文将结合实际案例,分析一个典型的视频类项目“小柿子”的跨平台开发过程中的关键技术点。一、背景介绍“小柿子影视”是一款轻量级视频播放App,专注于提供清爽的界面和流畅的播放体验。该项目同时支持小柿子安卓与小柿子iOS两个平台,目标用户覆盖广泛。因此,跨平台开发策略、播放器内核选择、缓存机
- Selenium测试安全策略:防止逆向工程
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构selenium网络tcp/ipai
Selenium测试安全策略:防止逆向工程关键词:Selenium自动化测试、逆向工程、代码安全、敏感信息保护、测试脚本防护摘要:本文从Selenium自动化测试的实际场景出发,深入解析测试脚本面临的逆向工程风险(如敏感信息泄露、测试逻辑被破解),通过生活案例类比技术概念,系统讲解代码混淆、敏感信息加密、日志脱敏等核心安全策略,并提供可落地的实战代码与工具推荐,帮助测试人员构建“防逆向”的安全测试
- Serverless架构下的持续交付实践
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构serverless架构运维ai
Serverless架构下的持续交付实践关键词:Serverless架构、持续交付、DevOps、无服务器计算、自动化部署摘要:本文深入探讨了Serverless架构下的持续交付实践。首先介绍了Serverless架构和持续交付的背景知识,接着解释了相关核心概念及其关系,详细阐述了核心算法原理与操作步骤,通过数学模型加深理解,结合实际项目案例展示了代码实现与解读,探讨了实际应用场景,推荐了相关工具
- 深入解析 Cookie、LocalStorage 和 SessionStorage
浪裡遊
杂文前端服务器后端信息与通信tcp/ip交互
浏览器数据存储三剑客:深入解析Cookie、LocalStorage和SessionStorage在现代Web应用开发中,经常需要在用户的浏览器端存储数据,以实现用户状态管理、个性化设置、离线功能等。浏览器为此提供了几种主要的客户端存储机制,其中Cookie、LocalStorage和SessionStorage是最常用且核心的三种。虽然它们都用于在浏览器端存储数据,但它们在设计目的、生命周期、作
- IDEA:程序编译报错:java: Compilation failed: internal java compiler error
天黑请闭眼
intellij-ideaJava异常处理intellij-ideajava
目录简介异常信息排查原因解决简介代码无法编译、无法打包异常信息java:Compilationfailed:internaljavacompilererror排查1、代码近期没有改动过,原先是可以正常编译的2、查看程序JDK,是JDK1.8没错,与原先JDK一致3、出现无法编译的情况是在升级IDEA版本之后4、使用IDEA-2024版本无法编译5、使用IDEA-2019、IDEA-2022版本可正
- 联咏NT98567高度集成边缘IPC应用SoC规格特性
weixin_Todd_Wong2010
边缘计算人工智能计算机视觉pythonc++神经网络
联咏NT98567MQG是一款高度集成的SoC,具有高图像质量、低比特率和低功耗的特点,适用于电池应用,目标是2Mp至5Mp/8Mp边缘IP摄像头应用。该SoC集成了双核ARMCortexA7CPU、新一代ISP、H.265/H.264视频压缩编解码器、视频处理引擎(VPE)用于双传感器拼接和鱼眼去畸变、高性能硬件DLA模块、图形引擎、显示控制器、以太网PHY、USB2.0主机/设备、音频编解码器
- 飞算 JavaAI 2.0.0和 AI 编程技术设计的 120 章 Java 系统教程
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总开发语言深度学习pillowAI编程人工智能
以下是基于飞算JavaAI2.0.0和AI编程技术设计的120章Java系统教程,涵盖从基础到高阶、理论到实践的全栈知识体系,结合经典案例与企业级项目实战,适合零基础到架构师的学习路径:第一部分:基础入门(第1-30章)Java开发环境配置JDK21+IntelliJIDEA+飞算AI插件安装第一个AI生成的HelloWorld程序基础语法与AI辅助编程数据类型、变量、运算符飞算AI:自动生成算法
- 基于 Kintex UltraScale 系列 2 路 QSFP+40G 光纤 PCIe 数据传输卡 / 光纤适配器(5GByte/s 带宽KU060光纤 PCIe 数据传输卡)
F_white
数据中心视频与图像采集处理机器视觉
PCIE732是一款基于PCIE总线架构的高性能数据传输卡,板卡具有1个PCIex8主机接口、2个QSFP+40G光纤接口,可以实现2路QSFP+40G光纤的数据实时采集、传输。板卡采用Xilinx的高性能KintexUltraScale系列FPGA作为实时处理器,板载2组独立的72位DDR4SDRAM大容量缓存。板卡具有1个RJ45千兆以太网口以及若干IO信号。一般应用于基于服务器的雷
- next-hexagonal-starter:前端六边形架构的简约实践
翟珊兰
next-hexagonal-starter:前端六边形架构的简约实践next-hexagonal-starter项目地址:https://gitcode.com/gh_mirrors/ne/next-hexagonal-starter项目介绍在软件开发中,六边形架构(HexagonalArchitecture)是一种设计模式,它通过将应用程序的业务逻辑与外部关注点(如UI、数据库、框架等)解耦,
- 钉钉小程序框架引入 Pinia 状态管理
上一篇文章描述了如何使用其他手段实现路由守卫文章地址:钉钉小程序开发中实现路由守卫拦截-CSDN博客本文将深入探讨如何在基于这些技术栈的小程序项目中引入状态管理插件一、了解PiniaPinia是一个全新的Vue状态管理库,旨在替代Vuex成为Vue3应用程序中的首选状态管理解决方案。它提供了更加简洁的API和更好的TypeScript支持。通过结合使用UniApp、Vue3、TypeScript和
- Kotlin编程语言的锡阿卡德项目:深度解析与实战应用
黄浴
本文还有配套的精品资源,点击获取简介:本项目围绕"锡阿卡德"这一与Kotlin编程语言相关的概念,探索了其可能指代的一个编程项目、框架或应用。Kotlin作为一种现代编程语言,其设计目标包括提升开发效率、安全性及互操作性。它结合了函数式和面向对象的编程特性,并与Java兼容。文章探讨了Kotlin的核心知识点,例如变量声明、数据类、空安全、扩展函数、高阶函数、协程、泛型、接口、类型别名以及Anko
- vue-28(服务器端渲染(SSR)简介及其优势)
清幽竹客
VUEvue.jsjavascript
服务器端渲染(SSR)简介及其优势服务器端渲染(SSR)是现代网络应用的关键技术,特别是使用Vue.js等框架构建的应用。它通过在服务器上渲染初始应用状态来弥补传统单页应用(SPA)的局限性,从而提升性能、SEO和用户体验。本课程将全面介绍SSR,包括其优势以及与客户端渲染的对比。我们将为后续课程中使用Nuxt.js奠定基础,这是一个强大的框架,简化了Vue.js的SSR实现。理解服务器端渲染(S
- Python中类基础知识详解和应用
点云SLAM
Pythonpython开发语言深度学习人工智能计算机视觉python中的类学习
Python类知识详解类的定义语法class类名:#类体(属性、方法)示例:classPerson:pass创建类的实例(对象)p=Person()#创建一个类的对象(实例)类的构造方法(__init__)__init__是类的构造函数,在实例化对象时自动调用,用于初始化属性。classPerson:def__init__(self,name,age):self.name=nameself.age
- 远程办公与协作新趋势:从远程桌面、VDI到边缘计算,打造高效、安全的混合办公环境
北极光SD-WAN组网
边缘计算安全人工智能
一、引言随着数字化转型的加速,越来越多的企业开始采用远程办公和混合办公模式,以提升员工的灵活性和企业的敏捷性。然而,异地办公也带来了诸如桌面环境不一致、安全风险增加、沟通协作效率降低等诸多挑战。因此,如何打造一致、安全且高效的远程办公环境,成为企业管理者急需破解的难题。本文将从远程桌面与虚拟桌面基础架构(VDI)、协作工具与平台集成、边缘计算在混合办公中的应用三个维度,分析如何构建一个高效、安全且
- SD-WAN优化云应用与多云架构访问的关键策略
1.SD-WAN如何优化企业对公有云和SaaS应用的访问?1.1智能流量优化SD-WAN通过应用识别技术,可以根据不同的业务应用流量需求,动态分配网络资源。例如,SD-WAN能够优先为钉钉、企业微信、金山文档等关键SaaS应用分配低延迟、高带宽的链路,确保这些应用的高效运行。动态路径选择:SD-WAN可实时监测网络性能(如延迟、抖动、丢包率),并基于网络状态动态选择访问云服务(如阿里云、腾讯云、华
- SD-WAN在智慧工厂中的实践:云平台与边缘计算高效协作解析
北极光SD-WAN组网
边缘计算人工智能
随着工业4.0与智能制造的深入推进,智慧工厂成为现代制造业的重要发展方向。智慧工厂依托云计算与边缘计算协同处理海量数据,以实现生产过程的智能化。然而,云平台和边缘计算之间的数据传输对网络的可靠性、灵活性和实时性提出了更高要求。在此背景下,SD-WAN(软件定义广域网)技术成为解决这一问题的重要工具。本文将探讨SD-WAN技术在制造业中如何优化云平台与边缘计算的协作应用,分析其在智慧工厂场景下的具体
- linux驱动开发(20)-DMA(四)
yyc_audio
linux驱动开发驱动开发linux服务器
分散/聚集映射分散/聚集映射通过将虚拟地址上分散的DMA缓冲区通过一个类型为structscatterlist的数组或者链表组织起来,然后通过一次的DMA传输操作在主存RAM与设备之间传输数据,如图所示:图中显示了主存中三个分散的物理页面与设备之间进行的一次DMA传输时分散/聚集映射示意,其中单个物理页面与设备之间可以看做是一个单一的流式映射,每个这样的单一映射在内核中有数据结构structsca
- 计算机基础和Java编程的练习题
柳依依@
Java入门java开发语言
1.计算机的核心硬件是什么?各自有什么用?中央处理器(CPU):负责执行程序中的指令,进行算术和逻辑运算,是计算机的“大脑”。内存(RAM):临时存储CPU正在处理的程序和数据,速度快但断电后数据丢失。硬盘(HDD/SSD):永久存储操作系统、应用程序和用户数据,断电后数据不丢失。主板:连接所有硬件组件,提供数据传输的通道。显卡(GPU):负责图形渲染,将数字信号转换为图像显示在屏幕上。电源:为计
- Flask(二) 路由routes
@昵称不存在
Flaskflask
文章目录基本路由定义路由参数路由规则设置请求方法(GET/POST)路由函数返回静态文件和模板Blueprint(模块化路由)显示当前所有路由Flask路由是Web应用程序中将URL映射到Python函数的机制。定义路由:使用@app.route(‘/path’)装饰器定义URL和视图函数的映射。路由参数:通过动态部分在URL中传递参数。路由规则:使用类型转换器指定URL参数的类型。请求方法:指定
- python中random中uniform怎么用_Python中的random.uniform()函数教程与实例解析
weixin_39763640
random.uniform()函数教程与实例解析1.uniform()函数说明random.uniform(x,y)方法将随机生成一个实数,它在[x,y]范围内。2.uniform()的语法与参数2.1语法#_*_coding:utf-8_*_importrandomrandom.uniform(x,y)或#_*_coding:utf-8_*_fromrandomimportuniformuni
- oracle 归档日志与RECOVERY_FILE_DEST 视图
是桃萌萌鸭~
oracle数据库
1.RECOVERY_FILE_DEST视图的作用RECOVERY_FILE_DEST是Oracle数据库用于管理快速恢复区(FastRecoveryArea,FRA)的一个视图。FRA是Oracle提供的一种集中存储恢复相关文件(如归档日志、备份文件、闪回日志等)的区域。RECOVERY_FILE_DEST视图的主要作用显示快速恢复区的路径和状态:快速恢复区的配置路径。快速恢复区的总大小和当前使
- 前端开发中的AI辅助测试:从手动到智能的转变
喜葵
人工智能
前端开发中的AI辅助测试:从手动到智能的转变作者:喜葵更新时间:2025-05-16前言前端测试一直是开发流程中的痛点:写测试代码耗时、维护成本高、覆盖率难提升。随着AI技术的发展,前端测试正在经历一场从"手动编写"到"AI辅助生成"的革命性转变。本文将探讨AI如何改变前端测试的现状,以及实际应用中的最佳实践。文章目录前端测试的现状与挑战AI辅助测试的核心技术实战案例:AI生成单元测试智能测试的优
- 【算法笔记】红黑树插入操作
PXM的算法星球
算法笔记算法笔记
红黑树插入与调整详解一、红黑树的五大性质红黑树是一种自平衡的二叉搜索树(BST),其核心特性如下:颜色属性:每个节点非红即黑根属性:根节点必须为黑色叶子属性:所有的NIL叶子节点都是黑色红节点约束:红色节点的子节点必须为黑色(即无连续红节点)黑高平衡:从任一节点到其所有后代叶子节点的路径中,黑色节点数量相等二、插入操作流程阶段1:标准BST插入从根节点开始查找插入位置新节点总是红色按照BST规则插
- No row with the given identifier exists 解决方法
dazhong2012
博客分类:异常、错误处理Hibernate有两张表,a和b.产生此问题的原因就是a里做了关联或者(特殊的多对一映射,实际就是一对一)来关联b.当hibernate查找的时候,b里的数据没有与a相匹配的,这样就会报Norowwiththegivenidentifierexists这个错.(一句话,就是数据的问题!)假如说,a里有自身的主键id1,还有b的主键id2,这两个字段.如果hibenrate
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc