TensorFlow-Cifar10数据集

TensorFlow-Cifar10数据集_第1张图片

TensorFlow-Cifar10数据集_第2张图片

# -*- coding: utf-8 -*-
"""
Created on Sun May 23 13:24:43 2021

@author: LiMeng
"""
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np

np.set_printoptions(threshold = np.inf)
cifar10 = tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

#可视化训练集输入特征的第一个元素
plt.imshow(x_train[0])
plt.show()

#打印出训练集输入特征的第一个元素
print("x_train[0]:\n",x_train[0])
#打印出训练集标签的第一个元素
print("y_train[0]:\n",y_train[0])

#打印出整个训练集输入特征形状
print("x_train.shape:\n",x_train.shape)
#打印出整个训练集标签形状
print("y_train.shape:\n",y_train.shape)
#打印出整个测试集输入特征形状
print("x_test.shape:\n",x_test.shape)
#打印出整个测试集标签形状
print("y_test.shape:\n",y_test.shape)

#打印出整个训练集输入特征形状
print("x_train.shape:\n",x_train.shape)     
#打印出整个训练集标签形状
print("y_train.shape:\n",y_train.shape)
#打印出整个测试集输入特征形状
print("x_test.shape:\n",x_test.shape)
#打印出整个测试集标签形状
print("y_test.shape:\n",y_test.shape)

TensorFlow-Cifar10数据集_第3张图片

x_train:是5万个32*32的3通道数据

y_train:是5万个标签

x_test:是1万个32*32的3通道数据

y_test:是1万个标签

 

你可能感兴趣的:(数字图像处理)